Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Самое важное из истории интегрального исчисления

Читайте также:
  1. D-mapping «Бал истории» в честь 250-летия Государственного Эрмитажа
  2. I Концепция «конца истории» Ф. Фукуямы
  3. I. Из истории развития методики развития речи
  4. II. Методы и источники изучения истории; понятие и классификация исторического источника.
  5. XIX век мировой истории: рождение индустриального общества.
  6. XVII век в истории России.
  7. XVIII в. В европейской и мировой истории.
  8. XX век в российской истории.
  9. А) Общие принципы и подходы к изучению истории отечественного государства и права.
  10. А) Предмет науки истории и ее место в системе исторических наук

Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный Евдоксом Книдским (ок. 408 - ок. 355 до н. э.) и широко применявшийся Архимедом (ок. 287 - 212 до н. э.). Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более не создал алгоритма интегрального исчисления. Ученые Среднего и Ближнего Востока в IX - XV веках изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в интегральном исчислении они не получили.

Деятельность европейских ученых в это время была еще более скромной. Лишь в XVI и XVII веках развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождение квадратур (задачи на вычисление площадей фигур), кубатур (задачи на вычисление объемов тел) и определение центров тяжести.

Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов развития интегрального исчисления . Архимед предвосхитил многие идеи интегрального исчисления . Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления .

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции. Например, криволинейную трапецию они представляли себе составленной из вертикальных отрезков длиной f(x) , которым тем не менее приписывали площадь, равную бесконечно малой величине f(x)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме S = бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571 - 1630 гг.) в своих сочинениях “Новая астрономия” (1609 г.) и “Стереометрия винных бочек” (1615 г.) правильно вычислил ряд площадей (например площадь фигуры, ограниченной эллипсом) и объемов (тело резалось на бесконечно тонкие пластинки).

Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598 - 1647 годы) и Э. Торричелли (1608 -1647 годы).

В XVII веке были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П. Ферма уже в 1629 году решил задачу квадратуры любой кривой y = , где N - целое ( т. е. вывел формулу ), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет, фактически опирался на идею приближенного интегрирования. И. Барроу (1603-1677 года), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования . Большое значение имели работы по представлению функции в виде степенных рядов.

Однако при всей значимости результатов, полученных математиками XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования , дающую достаточно точный алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием формулы Ньютона - Лейбница . Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801 - 1862 гг.), В. Я. Буняковский (1804 - 1889 гг.), П. Л. Чебышев (1821 - 1894 гг.). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.Строгое изложение теории интеграла появилось только в прошлом веке, Решение этой задачи связано с именами О. Коши , одного из крупнейших математиков немецкого ученого Б. Римана (1826 - 1866 гг.), французского математика Г. Дарбу (1842 - 1917).

Загрузка...

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1826 - 1922 гг.) теории меры.

Различные обобщения понятия интеграла уже в начале 20 столетия были предложены французскими математиками А. Лебегом (1875 - 1941 гг.) и А. Данжуа (1884 - 1974) советским математиком А. Я. Хичиным (1894 -1959 гг.)


Дата добавления: 2014-12-20; просмотров: 9 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2017 год. (0.008 сек.)