Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Формула Бернулли

Читайте также:
  1. А10. Закон самоіндукції, формула.
  2. А2. Формула закону електромагнітної індукції.
  3. Абсолютная погрешность (определение и формула)
  4. ВОПРОС N 70. Формула Пуассона.
  5. ВОПРОС N 83. Интегральная формула Муавра-Лапласа.
  6. Вопрос17. Формула для приращения функции. Дифференциал функции.
  7. Гонки Формула 1 Гран-при в Японии
  8. Дисперсия случайной величины. Св-ва дисперсии, формула для вычисление дисперсии, среднее квадратическое отклонение.
  9. ЕГО ФОРМУЛА, ГРАФИК, ОСОБЕННОСТИ.
  10. ЕГО ФОРМУЛА, ГРАФИК, ОСОБЕННОСТИ.

Варианты 1-10 (N – номер варианта)

В семье 6 детей. Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди этих детей:

N = 1) один мальчик;

N = 2) более одного мальчика;

N = 3) два мальчика;

N = 4) более двух мальчиков;

N = 5) не более двух мальчиков;

N = 6) три мальчика;

N = 7) более трех мальчиков;

N = 8) не более трех мальчиков;

N = 9) четыре мальчика;

N = 10) не более четырех мальчиков.

Варианты 11-20 (N – номер варианта)

Отрезок АВ разделен точкой С в отношении 3:1. На этот отрезок наудачу брошено шесть точек. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. Найти вероятность того, что:

N = 11) одна точка окажется левее точки С;

N = 12) более одной точки окажется левее точки С;

N = 13) две точки окажется левее точки С;

N = 14) более двух точек окажется левее точки С;

N = 15) не более двух точек окажется левее точки С;

N = 16) три точки окажется левее точки С;

N = 17) более трех точек окажется левее точки С;

N = 18) не более трех точек окажется левее точки С;

N = 19) четыре точки окажется левее точки С;

N = 20) не более четырех точек окажется левее точки С.

Варианты 21-30 (N – номер варианта)

Монету бросают 6 раз. Найти вероятность того, что «герб» выпадет:

N = 21) один раз;

N = 22) более одного раза;

N = 23) два раза;

N = 24) более двух раз;

N = 25) не более двух раз;

N = 26) три раза;

N = 27) более трех раз;

N = 28) не более трех раз;

N = 29) четыре раза;

N = 30) не более четырех раз.

 

Локальная и интегральная теоремы Муавра-Лапласа. Формула Пуассона

Варианты 1-10 (N – номер варианта)

Найти вероятность того, что событие А наступит ровно (70 + N) раз в (250 + N) независимых испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Варианты 11-20 (N – номер варианта)

Вероятность появления события А в каждом из (120 + N) независимых постоянна и равна 0,8. Найти вероятность того, что событие А появится не менее (70 + N) раз.

Варианты 21-30 (N – номер варианта)

Проведено (10 × N) независимых испытаний с вероятностью появления события А в каждом из них (N/1000). Найти вероятность того, что событие А появится точно 2 раза.

 

Дискретные случайные величины

В денежной лотерее выпущено 1000 билетов. Разыгрывается a1 выигрышей на сумму p1 тысяч рублей, a2 выигрышей на сумму p2 тысяч рублей и a3 выигрышей на сумму p3 тысяч рублей. Составить ряд распределения случайной величины Х – размер выигрыша по одному купленному билету; найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины; записать функцию распределения и построить ее график.

Варианты (N – номер варианта)


Дата добавления: 2015-01-05; просмотров: 12 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.007 сек.)