Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Понятие определённого интеграла

Читайте также:
  1. I . Понятие и признаки правовых норм.
  2. I. Диагностика: понятие, цели, задачи, требования, параметры
  3. I. Доказывание, понятие и общая характеристика
  4. I. Понятие денежных средств
  5. I. Понятие законности. Соотношение законности, права и власти.
  6. I. Понятие законности. Соотношение законности, права и власти.
  7. I. Понятие и виды делового общения
  8. I. Понятие и виды источников (форм) права.
  9. I. Понятие и виды преступности
  10. I. Понятие и сущность бюджетирования.

Метацентрическая высота h<0. Центр тяжести расположен выше центра величины, а в наклонном положении судна линия действия силы поддержания пересекает след диаметральной плоскости ниже центра тяжести (рис. 6). Сила тяжести и сила поддержания при малейшем крене образуют пару сил с отрицательным восстанавливающим моментом и судно опрокидывается.

Рис. 5. Случай неостойчивого судна при безразличном равновесии


Рис. 6. Случай неостойчивого судна при неустойчивом равновесии

Разобранные случаи показывают, что судно остойчиво, если метацентр расположен выше центра тяжести судна. Чем ниже опускается центр тяжести, тем судно более остойчиво. Практически это достигается расположением грузов не на палубе, а в нижних помещениях и трюмах.

 

 

Лекция 4.3 Определенный интеграл и его свойства.

Методы вычисления определённого интеграла

 

Понятие определённого интеграла

 

Пусть на отрезке [a, b] задана непрерывная функция f(x).

 

 

y

M

 

 

m

 

 

0 a xi-1 xi b x

 

 

Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками

x0 < x1 < x2 < … < xn

Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, … ,xn – xn-1 = Dxn. На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции:

[x0, x1] ® m1, M1; [x1, x2] ® m2, M2; … [xn-1, xn] ® mn, Mn.

 

Составим суммы:

n = m1Dx1 + m2Dx2 + … +mnDxn =

n = M1Dx1 + M2Dx2 + … + MnDxn =

Сумма называется нижней интегральной суммой, а сумма верхней интегральной суммой.

Т.к. mi £ Mi, то n £ n, а m(b – a) £ n £ n £ M(b – a)

Внутри каждого отрезка выберем некоторую точку e.

x0 < e1 < x1, x1 < e < x2, … , xn-1 < e < xn.

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn =

Тогда можно записать: miDxi £ f(ei)Dxi £ MiDxi

Следовательно,

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.

Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший.
Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если , то

 

Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].
Обозначение : , а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

 

 

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

 

Также верны утверждения:

 

 

Нахождение определенного интеграла по определению довольно затруднительно, поэтому при вычислении определенного интеграла от непрерывной функции используют формулу Ньютона – Лейбница:

, (3)

где – первообразная функции на отрезке .

Формула (3) устанавливает связь определенного интеграла с неопределенным интегралом и позволяет вычислить определенный интеграл, если известна одна из первообразных подынтегральной функции.

Теорема: (Теорема Ньютона – Лейбница)

Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

это выражение известно под названием формулы Ньютона – Лейбница.

 

Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то

при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:

Тогда .

А при х = b:

Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:

Теорема доказана.

 

Иногда применяют обозначение F(b) – F(a) = F(x) .

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

 

Примеры:

1) .

Загрузка...

2) .


Дата добавления: 2015-01-05; просмотров: 13 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав