Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Формула полной вероятности. Определение вероятности события

Читайте также:
  1. А10. Закон самоіндукції, формула.
  2. А2. Формула закону електромагнітної індукції.
  3. Абсолютная погрешность (определение и формула)
  4. Аксиоматическое определение вероятности
  5. Алгоритм разветвляющейся структуры в полной форме
  6. Анализ устойчивости исходной системы по полной модели
  7. Балансы основных фондов по полной и остаточной стоимости
  8. В экономике имеет место абсолютная гибкость заработной платы, обеспечивающая выравнивание AD и AS на уровне полной занятости
  9. Вероятности
  10. Вероятности в английском языке

ЛЕКЦИИ

Определение вероятности события

Классическое определение вероятности события. При классическом определении вероятность события определяется равенством

P(A)=m/n,

где m – число элементарных исходов испытания, благоприятствующих появлению события A; n – число возможных элементарных исходов испытания. Предполагается, что элементарные исходы образуют полную группу и равновозможны.

Геометрическое определение вероятности. Пусть отрезок l составляет часть отрезка L. На отрезке L наудачу поставлена случайная точка. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L, то вероятность попадания точки на отрезок l определяется равенством

P = Длина l/Длина L

Теорема сложения вероятностей

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А + В) = Р(А) + Р(В).

Следствие. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А1+А2+...+Аn) = P(A1) + Р(А2) +…+ Р(Аn).

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления

Р(А+В) = Р(А) + Р(В) – Р(АВ).

Теорема может быть обобщена на любое конечное число совместных событии. Например, для трех совместных событий

Р(A+В+С) = Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(ABC).

Теорема умножения вероятностей

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р(АВ) = Р(А)∙РA(В).

В частности, для независимых событий

P(АВ) = Р(А)∙Р(В),

т. е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

 

Формула полной вероятности

Вероятность события А, которое может наступить лишь при появлении одного из несовместных событий (гипотез) H1, H2, …, Hn образующих полную группу, равна сумме произведений вероятностей каждой из гипотез на соответствующую условную вероятность события A:

где .

 


Дата добавления: 2015-01-12; просмотров: 11 | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Задача об определении надежности электрической цепи.| Типовая аттестационная работа №1

lektsii.net - Лекции.Нет - 2014-2018 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав