Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Асимптотические свойства эмпирической функции распределения

Читайте также:
  1. B.1 Арифметические функции
  2. B.2 Тригонометрические функции
  3. Cудeбныe функции князя и вeчe
  4. I Кислотно-основные свойства.
  5. I Кислотные и основные свойства
  6. I. Дифференциал функции.
  7. I. Основные свойства живого. Биология клетки (цитология).
  8. I. ПОЧЕМУ МЫ ДОЛЖНЫ ИЗУЧАТЬ СТОРОНЫ И СВОЙСТВА ПЕДАГОГИЧЕСКОГО ПРОЦЕССА?
  9. I. Правосознание: понятие, структура, функции и виды.
  10. I. Сущность, формы, функции исторического знания.

1. По усиленному закону больших чисел сходится почти наверное к теоретической функции распределения :

почти наверное при

2. Выборочная функция распределения является асимптотически нормальной оценкой функции распределения при условии, что :

при

5. Числовые характеристики распределений: мода, медиана, среднее.

Числовые характеристики статистического распределения: выборочное среднее, оценки дисперсии, оценки моды и медианы, оценки начальных и центральных моментов. Статистическое описание и вычисление оценок параметров двумерного случайного вектора.

Одна из задач математической статистики: по имеющейся выборке оценить значения числовых характеристик исследуемой случайной величины.

Определение 16.1. Выборочным средним называется среднее арифметическое значений случайной величины, принимаемых в выборке:

где xi – варианты, ni - частоты.

Замечание. Выборочное среднее служит для оценки математического ожидания исследуемой случайной величины. В дальнейшем будет рассмотрен вопрос, насколько точной является такая оценка.

Определение 16.2. Выборочной дисперсией называется

а выборочным средним квадратическим отклонением

Так же, как в теории случайных величин, можно доказать, что справедлива следующая формула для вычисления выборочной дисперсии:

. (16.4)

Пример 1. Найдем числовые характеристики выборки, заданной статистическим рядом

xi        
ni        


Другими характеристиками вариационного ряда являются:

- мода М0 – варианта, имеющая наибольшую частоту (в предыдущем примере М0 = 5).

- медиана те - варианта, которая делит вариационный ряд на две части, равные по числу вариант. Если число вариант нечетно (n = 2 k + 1), то me = xk+ 1, а при четном n = 2 k . В частности, в примере 1

Оценки начальных и центральных моментов (так называемые эмпирические моменты) определяются аналогично соответствующим теоретическим моментам:

- начальным эмпирическим моментом порядка k называется

. (16.5)

В частности, , то есть начальный эмпирический момент первого порядка равен выборочному среднему.

- центральным эмпирическим моментом порядка k называется

. (16.6)

В частности, , то есть центральный эмпирический момент второго порядка равен выборочной дисперсии.




Дата добавления: 2015-01-12; просмотров: 44 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав