Студопедия
Главная страница | Контакты | Случайная страница | Спросить на ВикиКак

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Элементы теории корреляции. Коэффициент корреляции Пирсона.

Читайте также:
  1. d-элементы IV группы
  2. d-элементы V группы
  3. I. Исторические аспекты возникновения теории инвестиций и инвестиционного менеджмента.
  4. I. Исторические аспекты возникновения теории инвестиций и инвестиционного менеджмента.
  5. I. Основные парадигмы классической социологической теории.
  6. I. Социальное взаимодействие и социальное отношение. Теории социального взаимодействия.
  7. I. Теории социального неравенства.
  8. I.II. ЭЛЕМЕНТЫ ФИНАНСОВОЙ ПОЛИТИКИ
  9. II Отказ от предположений неоклассической теории
  10. II. Методология теории государства и права.

Корреля́ция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1] Математической мерой корреляции двух случайных величин служит корреляционное отношение , либо коэффициент корреляции (или ). В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической.

Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.

Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.

Пусть даны две выборки коэффициент корреляции Пирсона рассчитывается по формуле:

 

где – выборочные средние и , – выборочные дисперсии, .

Коэффициент корреляции Пирсона называют также теснотой линейной связи:

линейно зависимы,

линейно независимы.

9 Элементы теории корреляции. Коэффициент ранговой корреляции Спирмена.

Коэффициент ранговой корреляции Спирмена используется в случаях, когда:
- переменные имеют ранговую шкалу измерения;
- распределение данных слишком отличается от нормального или вообще неизвестно;
- выборки имеют небольшой объём (N < 30).

Интерпретация рангового коэффициента корреляции Спирмена не отличается от коэффициента Пирсона, однако его смысл несколько отличен. Чтобы понять различие этих методов и логически обосновать области их применения сравним их формулы.


Коэффициент корреляции Пирсона:

Коэффициент корреляции Спирмена:

Как видим формулы значительно различаются. Сравним формулы

В формуле корреляции Пирсона используется среднее арифметическое и стандартное отклонение коррелируемых рядов, а в формуле Спирмена не используется. Таким образом, для получения адекватного результата по формуле Пирсона, необходимо, чтобы коррелируемые ряды были приближены к нормальному распределению (среднее и стандартное отклонение являются параметрами нормального распределения). Для формулы Спирмена это не актуально.

Элементом формулы Пирсона является стандартизация каждого ряда в z-шкалу.

Как видим, перевод переменных в Z-шкалу присутствует в формуле коэффициента корреляции Пирсона. Соответственно, для коэффициента Пирсона абсолютно не имеет значение масштаб данных: к примеру, мы можем коррелировать две переменных, одна из которых имеет мин. = 0 и макс. = 1, а вторая мин. = 100 и макс. = 1000. Как бы не различался размах диапазона значений, все они будут переведены в стандартные z-значения одинаковые по своему масштабу.

В коэффициенте Спирмена такой нормализации не происходит, поэтому

ОБЯЗАТЕЛЬНЫМ УСЛОВИЕМ ИСПОЛЬЗОВАНИЯ КОЭФФИЦИЕНТА СПИРМЕНА ЯВЛЯЕТСЯ РАВЕНСТВО РАЗМАХА ДВУХ ПЕРЕМЕННЫХ.

Перед использованием коэффициента Спирмена для рядов данных с различным размахом, необходимо обязательно их ранжировать. Ранжирование приводит к тому, что значения этих рядов приобретают одинаковый минимум = 1 (минимальный ранг) и максимум, равный количеству значений (максимальный, последний ранг = N, т.е. максимальному количеству случаев в выборке).

В каких случаях можно обойтись без ранжирования

Это случаи, когда данные имеют исходно ранговую шкалу. К примеру, тест ценностных ориентаций Рокича.

Также, это случаи, когда количество вариантов значений невелико и в выборке присутствуют фиксированные минимум и максимум. К примеру, в семантическом дифференциале минимум = 1, максимум = 7.

10 Точечные оценки параметров распределенияи методы их нахождения. Метод моментов.


Дата добавления: 2015-01-12; просмотров: 17 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2017 год. (0.022 сек.)