Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Возрастание и убывание функции.

Читайте также:
  1. I. Дифференциал функции.
  2. Int nod (int, int); - прототип нашей функции.
  3. Internet, его функции. Web-броузеры. Поиск информации в Internet.
  4. Администрация Президента РФ: структура, функции.
  5. Анатомия и физиология продолговатого мозга: особенности строения, ядра, функции.
  6. Арендная плата. Состав и функции.
  7. Архитектура ОС Unix. Ядро ОС. Основные функции. Принципы взаимодействия с ядром.
  8. Асимптоты графика функции.
  9. Бесконечно большие функции.
  10. Бесконечно малые функции.

Возрастание и убывание дифференцируемой функции связано со знаком её производной. Напомним, что функция называется возрастающей на интервале , если для любых двух точек из неравенства следует, что ; убывающей на интервале , если из неравенства следует, что ; невозрастающей на интервале , если из неравенства следует, что , и неубывающей на интервале , если из неравенства следует, что .

Графики возрастающей, убывающей, невозрастающей и неубывающей функций

 

Очевидно, что функция возрастает тогда и только тогда, когда убывает функция ; аналогичное утверждение связывает неубывающую функцию с невозрастающей.

Графики функций и

 

Теорема. Пусть функция дифференцируема на интервале и при всех . Тогда возрастает на . Если же при всех , то не убывает на .

Аналогично, если при всех , то убывает на , а если при всех , то не возрастает на .

 

Пример 1. Рассмотрим функцию . Эта функция дифференцируема всюду и возрастает на всей оси : из следует, что . Однако неверно, что при всех : действительно, производная обращается в 0 при .

Итак, всё, что мы можем гарантировать в случае строгого возрастания (как и в случае нестрогого возрастания, то есть неубывания) -- это нестрогое неравенство .

Практический смысл полученных утверждений о связи возрастания и убывания со знаком производной -- в том, что для того, чтобы найти интервалы возрастания функции , надо решить относительно неравенство , а чтобы найти интервалы убывания -- решить неравенство .

Пример 2. Рассмотрим функцию . Её производная такова:

Интервал возрастания функции можно найти из неравенства

При решении этого неравенства учтём, что в области определения функции , так что нужно решать неравенство . Отсюда . Таким образом, функция возрастает на интервале . Нетрудно видеть, что при выполняется обратное неравенство , так что на этом интервале функция убывает.

 

График функции

 

Если два интервала возрастания функции примыкают друг к другу, то есть имеют вид и , и функция непрерывна в точке , то эти два смежных интервала можно объединить: функция будет возрастать на . То же, разумеется, относится и к смежным интервалам убывания функции.




Дата добавления: 2015-01-29; просмотров: 29 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав