Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Асимптоты графика функции.

Читайте также:
  1. I. Дифференциал функции.
  2. III. Выпуклость графика функции
  3. Int nod (int, int); - прототип нашей функции.
  4. Internet, его функции. Web-броузеры. Поиск информации в Internet.
  5. Lt;сұрақ>Word. Бiр мезетте бiрнеше графикалық элементтердi қалай белгiлеуге болады?
  6. Администрация Президента РФ: структура, функции.
  7. Анатомия и физиология продолговатого мозга: особенности строения, ядра, функции.
  8. Арендная плата. Состав и функции.
  9. Архитектура ОС Unix. Ядро ОС. Основные функции. Принципы взаимодействия с ядром.
  10. Асимптоты графика функции

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Определение. Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где .

Пример 8. Рассмотрим функцию . График имеет вертикальную асимптоту , поскольку при выполняется условие , а также при выполняется условие .

 

Вертикальная асимптота функции

Итак, для нахождения вертикальных асимптот графика данной функции нужно исследовать точки разрыва функции и точки, лежащие на границах области определения функции, и выяснить, при приближении аргумента к каким из этих точек значения функции стремятся к бесконечности.

Определение. Наклонной асимптотой графика функции при называется прямая , если выполнены два условия:
1) некоторый луч целиком содержится в ;
2) расстояние по вертикали между графиком и прямой стремится к 0 при :

 


Наклонной асимптотой графика функции при называется прямая , если
1) некоторый луч целиком содержится в ;
2) расстояние по вертикали между графиком и прямой стремится к 0 при :

Графики функций, имеющие наклонные асимптоты при и при

 

В случае, если наклонная асимптота расположена горизонтально, то есть при , она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота -- частный случай наклонной асимптоты; прямая является горизонтальной асимптотой графика при или , если

или

соответственно.

Пример 9. Рассмотрим функцию . График этой функции имеет наклонную асимптоту при . Действительно,

при

Однако эта функция не определена ни на каком луче вида , так что её график не может иметь асимптоты при .

 

Наклонная асимптота функции

 

Пример 10. График функции имеет горизонтальную асимптоту как при , так и при , поскольку, очевидно, при . Можно сказать также, что асимптота при у этого графика совпадает с асимптотой при .

 

Горизонтальная асимптота функции

 

Теорема: Прямая служит наклонной асимптотой для графика при (или при ) в том и толькотом случае, когда

 
 


соответственно, если

и

Таким образом, для нахождения наклонной (или горизонтальной, если получится ) асимптоты достаточно найти два указанных предела и, затем, . Прямая будет искомой асимптотой. Если же какой-либо из этих двух пределов не существует, то нет и соответствующей асимптоты.

 

Пример 11. Найдём наклонные асимптоты графика .

Попробуем отыскивать сразу оба предела, и при , и при .

Итак, и при , и при имеем и , так что обе наклонные асимптоты совпадают друг с другом и имеют уравнение , то есть, фактически, асимптота только одна.

 

График и его наклонная асимптота

 

Пример 12. Рассмотрим функцию . Покажем, что обе её наклонные асимптоты существуют, но не совпадают друг с другом.

Сначала найдём асимптоту при . Согласно доказанной теореме, имеем:


Таким образом, при наклонной асимптотой служит прямая .

Теперь найдём асимптоту при . Имеем:

Поскольку , мы можем считать, что в допредельном выражении . В полученной дроби поделим числитель и знаменатель на положительное число . Тогда под корнем нужно будет поделить на , и получится:

Вычисление проведите сами в качестве упражнения. При этом получается , так что наклонная асимптота при имеет уравнение .

 

График и его две наклонных асимптоты

 

Замечание 7.3 Если график имеет асимптоту (например, при ) и существует предел производной:

то . Иными словами, если угловой коэффициент касательной имеет предел, то этот предел равен угловому коэффициенту асимптоты17.

Однако асимптота может существовать и в случае, когда производная не имеет никакого предела при . Дело в том, что значения могут совершать мелкие, но частые колебания относительно ординаты асимптоты, так что значения производной могут при этом испытывать незатухающие колебания.




Дата добавления: 2015-01-29; просмотров: 27 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав