Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Примеры исследования функций и построения графиков.

Читайте также:
  1. A. Использование клинического, психолого-педагогического и логопедического исследования.
  2. II. Маркетинговые исследования
  3. II. Методы исследования
  4. II. Методы исследования
  5. III. ДАННЫЕ ОБЪЕКТИВНОГО ИССЛЕДОВАНИЯ БОЛЬНОГО
  6. III. ДАННЫЕ ФИЗИЧЕСКОГО ИССЛЕДОВАНИЯ
  7. III. Нейрогуморальная регуляция функций.
  8. III. Первоначальное накопление капитала (особенности, примеры)
  9. VI. Дальнейшие задачи и пути исследования
  10. VI. ЛАБОРАТОРНЫЕ, ДОПОЛНИТЕЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Пример 1. Построим график функции .

1). Функция -- многочлен, а у всех многочленов область определения -- вся вещественная ось: .

2). Многочлены бывают чётными функциями, если содержат только чётные степени переменного , и нечётными функциями, если содержат только нечётные степени . Для функции это не так, значит, не является ни чётной, ни нечётной функцией.

Периодическими из всех многочленов бывают только постоянные, то есть не зависящие от ; в нашем случае это не так, поэтому -- не периодическая функция.

3). Вертикальных асимптот график не имеет, поскольку область определения не имеет граничных точек. (У графиков многочленов вообще не бывает вертикальных асимптот.)

4). Поскольку многочлен имеет степень 3 (а не 1 или 0), то его график не имеет наклонных или горизонтальных асимптот.

5). Пересечение с осью найдём, вычислив значение при : имеем . Для нахождения пересечений графика с осью следует решить уравнение . Целых корней это уравнение не имеет. Вычисляя значения в некоторых целых точках, например,

мы начинаем подозревать, что уравнение имеет только один корень , лежащий на интервале , причём ближе к точке , чем к 0. (Действительно, если применить какой-либо из методов приближённого нахождения корней алгебраического уравнения, мы получим, что . Заметим, что меняет знак с на при переходе через точку .

6). Производная данной функции равна . Найдём интервалы возрастания функции, решая неравенство . Корни квадратного трёхчлена -- это , значит, решением неравенства служит объединение интервалов и . На каждом из этих интервалов функция возрастает. Интервалы убывания задаются обратным неравенством , то есть . Его решением служит интервал . На этом интервале функция убывает.

В точке возрастание функции сменяется убыванием, значит, -- точка локального максимума. Значение функции в этой точке равно

В точке убывание функции сменяется возрастанием, значит, -- точка локального минимума. Значение функции в этой точке равно

Как мы видим, на участке убывания значения функции изменяются от до и остаются положительными. Это доказывает, что сама функция действительно имеет только один корень.

7). Вторая производная функции равна . Для отыскания интервала выпуклости решим неравенство , то есть , откуда . Значит, функция выпукла на интервале . Обратное неравенство даёт нам интервал вогнутости; очевидно, это . В точке направление выпуклости меняется, следовательно, -- это точка перегиба. Значение функции в этой точке равно .

8). С учётом предыдущих семи пунктов строим график функции .

График функции

Пример 2. Исследуем функцию и построим её график.

1). Поскольку знаменатель положителен при всех , область определения функции -- вся ось .

2). Функция -- нечётная, поскольку при смене знака числитель меняет знак, а знаменатель остаётся без изменения, откуда . Следовательно, график функции симметричен относительно начала координат.

Периодической функция не является.

3). Поскольку область определения этой элементарной функции -- вся вещественная ось, вертикальных асимптот график не имеет.

4). Найдём наклонные асимптоты при в виде . Имеем:

Таким образом, асимптотой как при , так и при служит прямая .

5). Найдём точки пересечения с осями координат. Имеем: , причём -- единственное решение уравнения . Значит, график пересекает сразу и ось , и ось в начале координат.

Очевидно, что при и при .

6). Найдём производную:

Очевидно, что при всех ; единственная точка, в которой -- это . Значит, функция возрастает на всей оси , а в стационарной точке имеет горизонтальную касательную.

7). Найдём вторую производную:

Знаменатель этой дроби положителен при всех . Числитель имеет корни и , при этом на интервалах и -- на этих интервалах функция выпукла. На интервалах и выполняется обратное неравенство , здесь функция вогнута. Все три точки, в которых , то есть точки , являются точками перегиба.

8). Теперь мы можем построить график с учётом всех предыдущих пунктов исследования функции. График имеет такой вид:

График функции

Вопросы для закрепления теоретического материала к практической работе.

 

1. Укажите необходимые и достаточные признаки максимума и минимума функций.

2. В каких случаях функция не имеет ни максимума, ни минимума?

3. Какие точки графика называют точками перегиба?

4. Сформулируйте правила исследования функций на точки перегиба.

  1. Что необходимо знать для построения графика функции?

 




Дата добавления: 2015-01-29; просмотров: 38 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав