Студопедия
Главная страница | Контакты | Случайная страница | Спросить на ВикиКак

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Я часть) Выводы из категорических суждений посредством их преобразования

Читайте также:
  1. II. Виды суждений
  2. Административные и социально-политические преобразования
  3. Анализ простых категорических силлогизмов с помощью круговых схем
  4. Аналого-цифровые преобразователи. Принцип преобразования.
  5. Б) полезные знания, полученные посредством анализа данных.
  6. Биобиблиографические справочники (общая часть).
  7. В в мир истории. Осн напр европеизации страны в 1 четв 18 в. Формирование российского абсолютизма в первой четверти 18 века. Преобразования Петра 1.
  8. В задачах № 1,3,4,5 выводы обязательны
  9. В заключении работы излагаются краткие выводы по теме, характеризуется степень ее раскрытия, определяется, достигнута ли цель и задачи работы.
  10. В каждой контрольной работе должен быть заметен личный вклад студента. Не забывайте делать выводы в конце ответа на каждый вопрос, указывайте свое личное отношение к проблеме.

Непосредственными умозаключениями называются дедуктив­ные умозаключения, делаемые из одной посылки, являющейся ка­тегорическим суждением. К ним в традиционной логике относятся следующие: превращение, обращение, противопоставление пре­дикату и умозаключения по “логическому квадрату”.

Превращение - вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количест­ва, при этом предикат заключения является отрицанием предика­та посылки. Как уже отмечалось, по качеству связки (“есть” или “не есть”) категорические суждения делятся на утвердительные и отрицательные.

Схема превращения:

S естьР

S не есть не-Р

При этом частноутвердительное суждение превращается в частноотрицательное и наоборот, а общеутвердительное суж­дение превращается в общеотрицательное и наоборот. Можно выделить два частных способа превращения:

а) путем двойного отрицания, которое ставится перед связ­кой и перед предикатом:

S есть РS не есть не-Р

Пример: “Подлежащее-главный член предложения”. “Ни одно подлежащее не является не главным членом предложения”;

б) отрицание можно переносить из предиката в связку:

S есть не-РS не есть Р.

Пример: “Все галогены являются неметаллами.” →“Ни один галоген не является металлом”.

Превращению подлежат все четыре вида суждения А, Е,I, О.При этом:

1. Суждение А переходит в Е, что записывается АЕ. Структура: Все S есть Р. >Ни одно S не есть не-Р.

Примеры: “Все волки - хищные животные”.→“Ни один волк не является нехищным животным”; “Все бамбуки - злаки”. →“Ни один бамбук не является не злаком”.

2. Суждение Е переходит в А, т. е. Е-→А.

Ни одно S не есть Р. >Все S есть не-Р.

Примеры: “Ни один многогранник не является плоской фигу­рой”. →“Все многогранники являются неплоскими фигурами”; “Ни одна ель не является лиственным деревом”. →“Все ели являются нелиственными деревьями”.

3. Суждение I переходитв О, т. е. I →О.Некоторые S есть Р. →Некоторые S не есть не-Р. Пример: “Некоторые грибы съедобны”. →“Некоторые гри­бы не являются несъедобными”.

4. Суждение О переходит вI, т.е. О >1.Некоторые S не есть Р. >Некоторые S есть не-Р. Пример: “Некоторые члены предложения не являются главны­ми”. →“Некоторые члены предложения являются неглавными”.

Обращением называется такое непосредственное умозаключе­ние, в котором в заключении (в новом суждении) субъектом явля­ется предикат, а предикатом - субъект исходного суждения, т. е. происходит перемена мест субъекта и предиката при сохранении качества суждения. Схема обращения:

Sесть Р

Р ecть S

Приведем четыре примера:

1. “Все дельфины - млекопитающие”. →“Некоторые млеко­питающие являются дельфинами”.

2. “Все развернутые углы -углы, стороны которых составля­ют одну прямую”. →“Все углы, стороны которых составляют одну прямую, являются развернутыми углами”.

3. “Некоторые школьники являются филателистами”. →“Не­которые филателисты являются школьниками”.

4. “Некоторые музыканты - скрипачи”. →“Все скрипачи являются музыкантами”.

Обращение бывает двух видов: простое, или чистое (при­меры 2 и 3), и обращение с ограничением (примеры 1 и 4). Если не меняется количество суждения, то обращение будет чистое, или простое. Оно бывает тогда, когда и S, и Р исходного суждения либо оба распределены, либо оба не распределены. Обращение с ограничением получается тогда, когда изменяет­ся количество исходного суждения, т. е. изменяется кванторное слово (так, “все” меняется на “некоторые”, и наоборот).

Примеры:

1. Суждение А общеутвердительное. Встречаются два вида обращения:

а) чистое, или простое, обращение, которое бывает при ра­венстве объемов S и Р (например, в определениях понятий). Пример: “Все квадраты - равносторонние прямоугольники”. →“Все равносторонние прямоугольники - квадраты”;

б) обращение с ограничением, например, суждение “Все дель­фины - млекопитающие” обращается в суждение: “Некоторые млекопитающие-дельфины”.

2. Суждение Е общеотрицательное.

Так как в нем всегда и S, и Р распределены, то его обраще­ние чистое, или простое. Например: “Ни один прямоугольный треугольник не является равносторонней фигурой”. →“Ни одна равносторонняя фигура не является прямоугольным треугольни­ком”.

3. Суждение I частноутвердительное. Имеются два вида обращения:

а) обращение чистое, если S и Р не распределены. Например, суждение “Некоторые мастера спорта являются горнолыжниками”

при обращении дает следующее суждение: “Некоторые горнолыж­ники являются мастерами спорта”;

б) когда объем Р меньше объема S, т. е. Р распределен, а S не распределен, как, например, в суждении “Некоторые музыкан­ты - композиторы”, при обращении имеем суждение: “Все композиторы являются музыкантами”. Это обращение с ограниче­нием. Понятие “ограничение” означает только то, что происхо­дит перемена кванторного слова: было “некоторое”, стало “все”.

4. Суждение О частноотрицательное.

Применяя операцию обращения, мы не получим необходимо­го вывода. Так, например, из истинного частноотрицательного суждения “Некоторые животные не являются собаками” путем обращения нельзя получить истинное суждение.

Загрузка...

Противопоставление предикату - это такое непосредствен­ное умозаключение, при котором (в заключении) предикатом яв­ляется субъект, субъектом - понятие, противоречащее предика­ту исходного суждения, а связка меняется на противоположную.

Его схема:

Sесть Р

не-Р не есть S

Иными словами, мы поступаем здесь так: 1) вместо Р берем не-Р; 2) меняем местами S и не-Р; 3) связку меняем на проти­воположную.

Например дано суждение: “Все пихты - хвойные деревья”. В результате противопоставления предикату получим суждение: “Ни одно нехвойное дерево не является пихтой”.

Противопоставление предикату можно рассматривать как ре­зультат двух последовательных непосредственных умозаклю­чений: сначала производится превращение, затем - обращение превращенного суждения.

Противопоставление предикату для различных видов сужде­ний осуществляется так:

1. А. Все S есть Р. ± Ни одно не-Р не есть S. Пример: “Все барометры - приборы для измерения атмосферного давления”. →“Ни один прибор, не служащий для измерения атмосферного давления, не является барометром”.

2. Е. Ни одно S не есть Р. →Некоторые не-Р есть S. Пример:

“Ни одна бледная поганка не является съедобным грибом”. →“Некоторые несъедобные грибы есть бледные поганки”.

3. О. Некоторые S не есть Р. →Некоторые не-Р есть S. Пример: “Некоторые дома не являются газифицированными строениями”. →“Некоторые негазифицированные строения являются домами”.

4. I. Из частноутвердительного суждения необходимые вы­воды не следуют.

16.ПРОСТОЙ КАТЕГОРИЧЕСКИЙ СИЛЛОГИЗМ1

 

Категорический силлогизм — это вид дедуктивного умозак­лючения, в котором из двух истинных категорических суждений, где S и Р связаны средним термином, при соблюдении правил необходимо следует заключение.

Силлогизм происходит от греческого syllogismos (сосчитывание, выведение следствия).

В составе категорического силлогизма имеются две посылки и заключение.

 

Все металлы (М) электропроводны (Р) — большая посылка.

Медь (S) есть металл (М) — меньшая посылка.

Медь (S) электропроводна (Р) — заключение.

 

Понятия, входящие в состав силлогизма, называются тер­минами силлогизма. В приведенном примере терминами являют­ся: Р («электропроводник») — больший термин, это предикат заключения; S («медь») — меньший термин, это субъект заклю­чения; М («металл») — средний термин, служащий в посылках для связывания S и Р и отсутствующий в заключении (рис. 43).

Посылка, содержащая предикат заключения (т. е. больший термин), называется большей посылкой. Посылка, содержащая субъект заключения (т. е. меньший термин), называется меньшей посылкой.

В основе вывода по категорическому силлогизму лежит акси­ома силлогизма. «Все, что утверждается (отрицается) о роде (или классе), необходимо утверждается (отрицается) о виде (или о чле­не данного класса), принадлежащем к данному роду». Иными словами: то, что мы утверждаем о металле как роде, мы утверж­даем и о его виде — меди, а именно утверждаем его признак «быть электропроводником».

 


Дата добавления: 2014-12-18; просмотров: 25 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2017 год. (0.184 сек.)