Студопедия
Главная страница | Контакты | Случайная страница | Спросить на ВикиКак

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Эффективность.

Читайте также:
  1. В № 25. Понятие эффекта и эффективности. Абсолютная и сравнительная эффективность.
  2. Виды средств распространения рекламы и их эффективность.
  3. День 2. Время - ценный личностный ресурс. Занятость -> эффективность.
  4. Критерии оценки инвестиционного проекта и его коммерческая эффективность.
  5. Проблема эффективности. Производство и экономический рост. Экономическая и социальная эффективность.
  6. Расчёт ВЭР на экономическую эффективность.
  7. Типы управления и их эффективность.
  8. Финансовый механизм обеспечения социальных гарантий, его эффективность.

Каждый шаг алгоритма должен быть выполнен точно и за конечное время. В этом смысле говорят, что алгоритм должен быть эффективным, т.е. действия исполнителя на каждом шаге исполнения алгоритма должны быть достаточно простыми, чтобы их можно было выполнить точно и за конечное время. Обычно отдельные указания исполнителю, содержащиеся в каждом шаге алгоритма, называют командами. Таким образом, эффективность алгоритма связана с возможностью выполнения каждой команды за конечное время. Совокупность команд, которые могут быть выполнены конкретным исполнителем, называется системой команд исполнителя. Следовательно, алгоритм должен быть сформулирован так, чтобы содержать только те команды, которые входят в систему команд исполнителя. Кроме того, эффективность означает, что алгоритм может быть выполнен не просто за конечное, а за разумно конечное время.

Приведенные выше комментарии поясняют интуитивное понятие алгоритма, но само это понятие не становится от этого более четким и строгим. Тем не менее, в математике долгое время использовали это понятие. Лишь с выявлением алгоритмически неразрешимых задач, т.е. задач, для решения которых невозможно построить алгоритм, появилась настоятельная потребность в построении формального определения алгоритма, соответствующего известному интуитивному понятию. Интуитивное понятие алгоритма в силу своей неопределенности не может быть объектом математического изучения, поэтому для доказательства существования или несуществования алгоритма решения задачи было необходимо строгое формальное определение алгоритма.

Построение такого формального определения было начато с формализации объектов (операндов) алгоритма, так как в интуитивном понятии алгоритма его объекты могут иметь произвольную природу. Ими могут быть, например, числа, показания датчиков, фиксирующих параметры производственного процесса, шахматные фигуры и позиции и т.п. Однако предполагая, что алгоритм имеет дело не с самими реальными объектами, а с их изображениями, можно считать, что операнды алгоритма — слова в произвольном алфавите. Тогда получается, что алгоритм преобразует слова в произвольном алфавите в слова того же алфавита. Дальнейшая формализация понятия алгоритма связана с формализацией действий над операндами и порядка этих действий. Одна из таких формализаций была предложена в 1936 году английским математиком А.Тьюрингом, который формально описал конструкцию некоторой абстрактной машины (машины Тьюринга) как исполнителя алгоритма и высказал основной тезис о том, что всякий алгоритм может быть реализован соответствующей машиной Тьюринга. Примерно в это же время американским математиком Э.Постом была предложена другая алгоритмическая схема — машина Поста, а в 1954 году советским математиком А.А.Марковым была разработана теория классов алгоритмов, названных им нормальными алгорифмами, и высказан основной тезис о том, что всякий алгоритм нормализуем.

Эти алгоритмические схемы эквиваленты в том смысле, что алгоритмы, описываемые в одной из схем, могут быть также описаны и в другой. В последнее время эти теории алгоритмов объединяют под названием логические.

Логические теории алгоритмов вполне пригодны для решения теоретических вопросов о существовании или несуществовании алгоритма, но они никак не помогают в случаях, когда требуется получить хороший алгоритм, годный для практических применений. Дело в том, что с точки зрения логических теорий алгоритмы, предназначенные для практических применений, являются алгоритмами в интуитивном смысле. Поэтому при решении проблем, возникающих в связи с созданием и анализом таких алгоритмов, нередко приходится руководствоваться лишь интуицией, а не строгой математической теорией. Таким образом, практика поставила задачу создания содержательной теории, предметом которой были бы алгоритмы, как таковые, и которая позволяла бы оценивать их качество, давала бы практически пригодные методы их построения, эквивалентного преобразования, доказательства правильности и т.п.

Содержательная (аналитическая) теория алгоритмов стала возможной лишь благодаря фундаментальным работам математиков в области логических теорий алгоритмов. Развитие такой теории связано с дальнейшим и расширением формального понятия алгоритма, которое слишком сужено в рамках логических теорий. Формальный характер понятия позволит применять к нему математические методы исследования, а его широта должна обеспечить возможность охвата всех типов алгоритмов, с которыми приходиться иметь дело на практике.


Дата добавления: 2014-12-20; просмотров: 10 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2017 год. (0.009 сек.)