Студопедия
Главная страница | Контакты | Случайная страница | Спросить на ВикиКак

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Элементы алгебры логики. Конъюнкция, дизъюнкция, отрицание.

Читайте также:
  1. d-элементы IV группы
  2. d-элементы V группы
  3. I. Решение логических задач средствами алгебры логики
  4. I.II. ЭЛЕМЕНТЫ ФИНАНСОВОЙ ПОЛИТИКИ
  5. II. Основные элементы денежной системы.
  6. III. Составные элементы генерального бюджета.
  7. s-, p-Элементы, переходные элементы
  8. алгебра логики.ОСНОВНЫЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ И ИХ РЕАЛИЗАЦИЯ
  9. Архитектура. Новые архитектурные элементы. Свод, Арка. Развитие реалистического отражения мира.
  10. Аудиторский риск, его составные элементы и порядок оценки

 

 

Логическая операция ИЛИ. Логическую функцию принято задавать в виде таблицы. В левой части этой таблицы перечисляются все возможные значения аргументов функции, т.е. входные величины, а в правой указывается соответствующее им значение логической функции. Для элементарных функций получается таблица истинности данной логической операции. Для операции ИЛИ таблица истинности имеет вид:

Операцию ИЛИ называют также логическим сложением, и потому её можно обозначать знаком «+».

Рассмотрим сложное единичное высказывание: «Летом я поеду в деревню или в туристическую поездку». Обозначим через А простое высказывание «Летом я поеду в деревню», а через В - простое высказывание «Летом я поеду в туристическую поездку». Тогда логическое выражение сложного высказывания имеет вид А+В, и оно будет ложным только, если ни одно из простых высказываний не будет истинным.

 

Логическая операция И. Таблица истинности для этой функции имеет вид:

Из таблицы истинности следует, что операция И - это логическое умножение, которое ничем не отличается от традиционно известного умножения в обычной алгебре. Операцию И можно обозначить знаком по-разному:

В формальной логике операции логического умножения соответствуют связки и, а, но, хотя.

Логическая операция НЕ. Эта операция является специфичной для алгебры логики и не имеет аналога в обычной алгебре. Она обозначается чертой над значением переменной, либо знаком приставки перед значением переменной:

Читается в обоих случаях одинаково «Не А». Таблица истинности для этой функции имеет вид:

В вычислительной технике операцию НЕ называют отрицанием или инверсией, операцию ИЛИ - дизъюнкцией, операцию И - конъюнкцией. Набор логических функций “И”, “ИЛИ”, “НЕ” является функционально полным набором или базисом алгебры логики. С помощью него можно выразить любые другие логические функции, например операции “строгой дизъюнкции”, “импликации” и “эквивалентности” и др. Рассмотрим некоторые из них.



Дата добавления: 2014-12-20; просмотров: 22 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2017 год. (0.008 сек.)