Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Возможности генной инженерии

Читайте также:
  1. A. Раздел специальной психологии, изучающей психическое развитие у умственно отсталых людей и возможности его коррекции.
  2. E. закономерности психического развития, протекающего в неблагоприятных условиях, патогенная сила которых превышает компенсаторные возможности индивида
  3. V1: Задачи инженерии знаний.
  4. X возможности получения осужденным заработной платы или иного дохода
  5. Анализ опасности и возможности внешней среды.
  6. Аналитические возможности отчетов о движении денежных средств, выполненных прямым и косвенным методами.
  7. Банк России, определяя путь реструктуризации ком.банков, счел необходимым разделить банки на 4 группы, определив возможности их выхода из кризиса и место в послекризисной БС.
  8. Библиотечный модуль GRAPH. Графические возможности ТП.
  9. В послеоперационном периоде. При невозможности отделения верхушки
  10. В этот период возникает ряд новых научных концепций, которые коренным образом изменили человеческие возможности социального познания.

Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека
В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг).

 

Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее.

 

 

Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии,и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами.

 

 

Для чистого вырезания трансгенного ДНК в растительный геном, всё больше применяют заимствованные из микробной генетики системы гомологичной рекомбинации, такие как системы Cre-lox и Flp-frt. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трангена.

 

 

Помимо интегративных систем экспрессии, будут опробованы автономно реплицирующиеся векторы.осбый интерес представляют _скусственные хромосомы растений, которые теоретически не накладывают никаких ограничений на объём вносимой теоретической информации.

 


Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью.

 

 

Применяемые на практике методы можно разделить на две категории:
Методы, позволяющие вести экспрессионное профилирование: субстракционная гибридизация, электронное сравнение EST-библиотек, «генные чипы» и так далее. Они позволяют устанавливать корреляцию между тем или иным фенотипическим признаком и активностью конкретных генов.

 


Позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).

 


Вышеназванные методы не предполагают ни каких изначальных сведений о генах, контролирующих тот или иной признак. Отсутствие рационального компонента в данном случае является положительным обстоятельством, поскольку неограничен нашими сегодняшними представлениями о природе и генном контроле конкретного интересующего нас признака.

 


Кроме всего этого группа ученых, таких как Марк Адам (ведущий сотрудник института геномных исследований в штате Мэриленд – США, частной исследовательской компании, занимающейся исключительной работой в области картирования генов), Крэйк Вентер (директор этого института) и соавторами, разрабатывается проект «Геном человека». Цель этого проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека.

 

 

Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причину многих наследственных заболеваний и этим открыть пути к их лечению. Что бы последовательно приближаться к решению проблемы картирование генов человека, было сформулировано пять основных целей:
Завершить составление детальной генетической карты, на которой были бы помечены гены, отстоящие друг от друга на расстоянии не превышающем в среднем 2 млн. оснований (1 млн. оснований принято называть мегобазой);

 


составить физические карты каждой хромосомы (разрешение 0.1 Мб);
получить карту всего генома в виде охарактеризованных клонов (5 тыс. оснований в клоне или 5 Кб);

 


завершить к 2004 году полное секвенирование ДНК (разрешение одного основание);
нанести на полностью завершенную секвенсовую карту все гены человека (к 2005 году).
Ожидалось, что, когда все указанные цели будут постигнуты, исследователи определят все функции генов и разработают методы биологического и медицинского применения полученных данных.

 


Рассмотрев темпы ускорения работы в рамках проекта «Геном человека», руководители этого проекта объявили 23 октября 1998г., что программа будет полностью завершена гораздо раньше, чем планировалось, и сформулировали «Новые задачи проекта «Геном человека»:
полностью завершить в декабре 1998 года работу по секвенирование генома «Круглого червя» c. Elegans (это было сделано в срок);

 


закончить предварительный анализ последовательности ДНК человека к 2001 году, а полную последовательность к 2003 году;
картировать к 2002 году геном плодовой мухи;
начать секвенирование генома мыши с использованием методов ДНК искусственных хромосом дрожжей (завершить этот проект к 2005 году).

 


Помимо этих целей, официально включен в поддерживаемый правительством США и рядом других правительств проект, некоторые исследовательские центры объявили о задачах, которые будут решаться в основном за счет частных фондов и пожертвователей.

 

 

Так, ученые калифорнийского университета (Беркли), Орегонского университета и Ракового исследовательского центра имени Фрейда Хатчинсона начали программу «Геном собаки».

 


Международное общество секвенирование в феврале 1996 года приняло решение о том, что любая последовательность нуклиотидов размером 1-2 Кб должна быть обнародована в течение 24 часов после ее установления.

Автор: David на 14:25 0 коммент.




Дата добавления: 2014-12-20; просмотров: 24 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав