Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Интегралы от обратных тригонометрических функций.Интегралы от обратных тригонометрических функций, умноженных на многочлен

Читайте также:
  1. А) товарного производства и б) рынка, которые воссоединяются с помощью прямых и обратных связей.
  2. Интегралы от тригонометрических функций, умноженных на многочлен
  3. Интегралы от экспоненты, умноженной на многочлен
  4. Интерполирование по однократным узлам многочленами Ньютона
  5. Интерполирование по однократным узлам. Интерполяционные многочлены Лагранжа
  6. Называется n-м многочленом Тейлора функции f(x) в точке x0.
  7. Несобственные интегралы на бесконечном промежутке интегрирования
  8. Несобственные интегралы от функции, неограниченной на отрезке
  9. Понятие о локализации функций, двигательные и ассоциативные зоны.

Общее правило: за всегда обозначается обратная тригонометрическая функция.

Напоминаю, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи я буду называть их «арками»

Пример 11

Найти неопределенный интеграл.

Решаем.

Интегрируем по частям:

Интеграл найден методом подведения функции под знак дифференциала, можно использовать и метод замены в «классическом» виде. Аналогичный пример мы разбирали на уроке Метод замены переменной в неопределенном интеграле.

Таким образом, помимо «чистого» интегрирования по частям нередко требуется применять и другие методы, приёмы решения.

Пример 12

Найти неопределенный интеграл.

Это пример для самостоятельного решения

И заключительный пример сегодняшнего урока под счастливым номером тринадцать: «арк», умноженный на многочлен. Он сложнее, и предназначен для маньяков желающих лучше разобраться в методе интегрирования по частям. Пример, пожалуй, будет тоже для самостоятельного решения, поскольку меня немного утомил тот логарифм в квадрате.

Пример 13

Найти неопределенный интеграл.

Что касаемо интегрирования по частям, почти всё разобрали. Рассмотренный метод часто применяется в комбинации с другими приёмами решения интегралов. Читатели с хорошими навыками могут ознакомиться с такими примерами на уроке Сложные интегралы.

А сейчас, как любила говорить моя учительница по математике, пора кончать.

Желаю успехов!

Решения и ответы:

Пример 3: Решение:

Пример 4: Решение:

Интегрируем по частям:

Пример 6: Решение:

Дважды интегрируем по частям:

Пример 8: Решение:

Интегрируем по частям:

Пример 10: Решение:

Интегрируем по частям:

Примечание: Здесь мы использовали известную тригонометрическую формулу двойного угла . Её можно было использовать и сразу: , а потом интегрировать по частям.

Похожим способом также решаются интегралы вроде , – в них необходимо (сразу или в ходе решения) понизить степень синуса (косинуса) с помощью соответствующих формул. Более подробно – см. Интегралы от тригонометрических функций.

Пример 12:

Интегрируем по частям:

Пример 13:

Интегрируем по частям:

Примечание: Если возникли трудности с интегралом , то следует посетить урок Интегрирование некоторых дробей.

Вы выполнили проверку? Может я и ошибся где… ;)

 


Дата добавления: 2015-02-22; просмотров: 19 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав