Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Решение типовых задач

Читайте также:
  1. Cельскохозяйственное картографирование, его особенности и задачи.
  2. I группа: задачи на решение проблем в обучении
  3. I Цели и задачи изучения дисциплины
  4. I. Семинар. Тема 1. Предмет, система, задачи судебной медицины. Правовые и организационные основы судебно-медицинской экспертизы, Понятие, объекты, виды, экспертизы
  5. I. Цель и задачи дисциплины
  6. II. Типовые задачи.
  7. II. Цели и задачи выпускной квалификационной работы
  8. PR — деятельность в органах власти: задачи и специфика.
  9. V2: Предмет, задачи, метод патофизиологии. Общая нозология.
  10. А. Задачі для самоконтролю

«Средние величины. Мода и медиана»

Задача 1. По следующим данным определите средний стаж рабочего (табл.1):

Таблица 1

Общий стаж работы, лет до 5 5-10 10-15 15-20 20-25 25 и более Итого
Число рабочих

 

Решение. Признаком в данной задаче является общий стаж рабочего, а частотами соответственно количество рабочих, имеющих тот или иной стаж. Ряд распределения - интервальный, причем первый и последний интервал - открытые.

Если интервалы открыты, то по правилам принимаем величину первого интервала равной второму, а последнего предпоследнему. Так как имеются и значения признака и частоты, то средний стаж находим по формуле средней арифметической взвешенной. А так как ряд интервальный, то в качестве значения признака в каждой группе берём середины интервала

.

Задача 2. Все частоты уменьшились в два раза, а все варианты увеличились на две единицы. Что произойдет со средней?

Решение. Согласно свойствам средней арифметической, если все частоты ряда уменьшить или увеличить в одинаковое количество раз, то средняя не изменится, т.е. с точки зрения частот - средняя не изменится. Если все варианты увеличить или уменьшить на одно и то же число, то и средняя изменится на это же число.

В нашем случае средняя увеличится на две единицы.

Задача 3. Двое рабочих в течение 8-часового рабочего дня изготовляют одни и те же детали. Первый из них тратит на изготовление детали 30 мин., второй - 40 мин. Вычислите среднюю затрату времени на изготовление одной детали.

Решение. В этой задаче явно даны только значения признака - затраты времени, а частоты, которыми является количество изготовленных каждым рабочим деталей, в явном виде не присутствуют. Однако произведения значений признака на частоты дает количество проработанного времени - 8 час. Так как произведения признака на частоту равны, то средняя определяется по формуле средней гармонической простой:

мин.

Задача 4. Автомобиль проехал 1000 км, из них 480 км он прошел со скоростью 60 км/час, 320 - со скоростью 80 км/час и 200 км - со скоростью 50 км/час. Определите среднюю скорость, с которой совершался рейс.

Решение. В этой задаче опять известны только значения признака, а значения частот (время) не даны, однако имеются данные о пройденном расстоянии, которое является произведением признака на частоту. В этом случае средняя рассчитывается по формуле средней гармонической взвешенной:

км/ч.

Задача 5. Определите среднегодовой темп роста выпуска продукции на заводе, если в 2003 г. было произведено продукции на 21,15 у.д.е., а в 2008 г. было запланировано произвести продукции на 35 у.д.е.

Решение. Для определения средних темпов роста применяется средняя геометрическая. Когда имеются данные о первом периоде (в нашем случае - выпуск продукции в 2003 г. на сумму 21,15 у.д.е.) и в последнем периоде (в задаче — выпуск продукции по плану в 2008 г. на сумму 35 у.д.е.), среднегодовой темп роста определяется по формуле:

Задача 6. Определить моду и медиану по следующим данным (табл 4.6):

Таблица 4.6

Распределение студентов заочного отделения по возрасту

Возрастные группы Число студентов Накопленные частоты
до 20 лет
20-25
25-30
30-35
35-40
40-45
45 лет и выше
Итого:  

 

Решение. Для определения моды определяем модальный интервал. Им является интервал 25-30 лет, так как его частота наибольшая (1054), тогда

Мо лет.

Для определения медианы тоже необходимо определить медианный интервал. Медианным интервалом является интервал 25-30, так как он является первым интервалом, накопленная частота которого превышает полусумму частот (3462: 2=1731). Тогда медиана определится как:

Ме года.

 


Дата добавления: 2015-02-22; просмотров: 18 | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Спадкування за законом.| Дифракция на круглых отверстиях.

lektsii.net - Лекции.Нет - 2014-2018 год. (0.008 сек.)