Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вывод из формализма Ньютона

Читайте также:
  1. I. Дискенезия желче-выводящих путей.
  2. III. ВЫВОДЫ
  3. VI. Дальнейшие выводы для анализа и политики
  4. Английская классическая политическая экономия: основные представители и выводы
  5. Базовая система ввода-вывода (BIOS). Понятие CMOS RAM
  6. Билет 13. Английская классическая политическая экономия: основные представители и выводы.
  7. Билет 17. Тип множество: описание, ввод, вывод, операции над множествами
  8. В заключении не забыть сформулировать вывод, обобщающий свою точку зрения.
  9. ВВОД И ВЫВОД
  10. Ввод и вывод информации

Рассмотрим выражение определения силы

Перепишем его для системы из N частиц:

где суммирование идет по всем силам, действующим на n -ю частицу со стороны m -ой. Согласно третьему закону Ньютона, силы вида и будут равны по абсолютному значению и противоположны по направлению, то есть Тогда после подстановки полученного результата в выражение (1) правая часть будет равна нулю, то есть:

 

или

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

(постоянный вектор).

То есть суммарный импульс системы частиц есть величина постоянная. Нетрудно получить аналогичное выражение для одной частицы.

Следует учесть, что вышеприведенные рассуждения справедливы лишь для замкнутой системы.

Также стоит подчеркнуть, что изменение импульса зависит не только от действующей на тело силы, но и от продолжительности её действия.

 

Реактивное движение.

 

Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным.

Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противо-положную сторону. Действительно, так как m1v1+m2v2=0, то m1v1=-m2v2, т. е.

v2=-v1m1/m2.

Из этой формулы следует, что скорость v2, получаемая системой с массой m2, зависит от выброшенной массы m1 и скорости v1 ее выбрасывания.

Тепловой двигатель, в котором сила тяги, возникающая за счет реакции струи вылетающих раскаленных газов, приложена непосредственно к его корпусу, называют реактивным. В отличие от других транспортных средств устройство с реактивным двигателем может двигаться в космическом пространстве.

Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов

 

БИЛЕТ 4

Полупроводники

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.

Виды полупроводников

По характеру проводимости

· Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где ρ удельное сопротивление, μn — подвижность электронов, μp — подвижность дырок, Nn , p — их концентрация, q — элементарный электрический заряд (1,602×10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых механизмов используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

· Электронные полупроводники (n-типа)

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырехвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

· Дырочные полупроводники (р-типа)

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырехвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвертым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называютсяакцепторными.

Проводимость P-полупроводников приблизительно равна:

Полупроводниковые приборы

Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

· Интегральные схемы (микросхемы)

· Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

· Тиристоры, фототиристоры,

· Транзисторы,

· Приборы с зарядовой связью,

· Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

· Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели).

· Терморезисторы, датчики Холла

 

БИЛЕТ 5

Фотоэффект -испускание электронов телами под действием света, который был открыт в 1887 г. Герценом.

В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически
нейтральной металлической пластинки последняя приобретает положительный заряд.
В этом же году Столетев создал первый фотоэлемент и применил его на практике,
потом он установил прямую пропорциональность силы фототока интенсивности
падающего света. В 1899 Дж. Дж. Томпсон и Ф. Ленард доказали, что при
фотоэффекте свет выбивает из вещества электроны.
Формулировка 1-го закона фотоэффекта: количество электронов,
вырываемых светом с поверхности металла за 1с, прямо пропорционально
интенсивности света.
Согласно 2-ому закону фотоэффекта, максимальная
кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой
света и не зависит от его интенсивности.
3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е.
минимальная частота света v0(или максимальная длина волны y0), при которой ещё возможен
фотоэффект, и если v<v0, то фотоэффект уже не происходит.
Первый закон объяснён с позиции электромагнитной
теории света: чем больше интенсивность световой

волны, тем большему количеству
электронов будет передана достаточная для вылета из металла энергия. Другие
законы фотоэффекта противоречат этой теории.
Теоретическое объяснение
этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное
излучение представляет собой поток отдельных квантов(фотонов) с энергией hv
каждый (h-постоянная Планка). При фотоэффекте часть падающего
электромагнитного излучения от поверхности металла отражается, а часть
проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон,
электрон получает от него энергию и, совершая работу выхода, покидает металл:
Hv=A+mv2
/ 2, где mv2 –максимальная кинетическая энергия, которую может иметь электрон при
вылете из металла. Она может быть определена:
mv2/2=eU
3.U 3 - задерживающее напряжение. В теории Эйнштейна законы фотоэффекта объясняются следующим образом:
1.Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов,

вырванных из металла.
2. Второй закон следует из уравнения: mv 2 /2=hv-A.
3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда
энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е.
частота света при этом должна превышать некоторое определённое для каждого
вещества значение, равное A>h. Эта минимальная частота
определяет красную границу фотоэффекта:
vo=A/h yo=c/vo=ch/A.
4. При меньшей частоте света энергии фотона не хватает для совершения
электроном работы выхода, и поэтому фотоэффект отсутствует.
Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетевым.

В 1888 Столетов заметил, что фототок появляется
почти одновременно с освещением катода фотоэлемента. По классичес

кой волновой теории электрону в поле световой электромагнитной волны требуется время для
накопления необходимой для вылета энергии, и поэтому фотоэффект должен
протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой
теории же, когда фотон поглощается электроном, то вся энергия фотона переходит
к электрону и никакого времени для накопления энергии не требуется.
С изобретением лазеров появилась возможность экспериментировать с очень
интенсивными пучками света. Применяя сверхкороткие импульсы лазерного
излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем
покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами.
В этом случае уравнение фотоэффекта записывается: Nhv=A+mv 2 /2,чему соответствует красная
граница. Фотоэффект широко используется в технике. На
явлении фотоэффекта основано действие фотоэлементов. Комбинация фотоэлемента с
реле позволяет конструировать множество ”видящих” автоматов, которые
вовремя включают и выключают маяки, уличное освещение, автоматически открывают
двери, сортируют детали, останавливают мощный пресс, когда рука человека
оказывается в опасной зоне. С помощью фотоэлементов осуществляется
воспроизведение звука, записанного на киноплёнке.

 

БИЛЕТ 6

Конденсаторы.

Конденсаторы. Простейшие способы разделения разноименных электрических зарядов — электризация при соприкосновении, электростатическая индукция — позволяют получить на поверхности тел лишь сравнительно небольшое число свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.
Конденсатор — это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.
Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, так как равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электрическая емкость конденсатора.

Электрическая емкость конденсатора. Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.

Единица электроемкости. Единица электроемкости в международной системе — фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. .
В практике широко используются дольные единицы электроемкости — микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

1 мкФ = 10-6 Ф;

1 нФ = 10-9 Ф;

1 пФ = 10-12 Ф.

Электроемкость плоского конденсатора. Напряженность поля между двумя пластинами плоского конденсатора равна сумме напряженностей полей, создаваемых каждой из пластин:

.

Энергия заряженного конденсатора

Энергия заряженного конденсатора. Зарядим конденсатор и затем подключим к его выводам электрическую лампу (рис. 147). При подключении лампы наблюдается кратковременная вспышка света. Из этого опыта следует, что заряженный конденсатор обладает энергией.

 

Если на обкладках конденсатора электроемкостью C находятся электрические заряды + q и - q, то согласно формуле напряжение между обкладками конденсатора равно

В процессе разрядки конденсатора напряжение между его обкладками убывает прямо пропорционально заряду q от первоначального значения U до 0.
Среднее значение напряжения в процессе разрядки равно

Для работы А, совершаемой электрическим полем при разрядке конденсатора, будем иметь:

Следовательно, потенциальная энергия W p конденсатора электроемкостью C, заряженного до напряжения U, равна

Энергия конденсатора обусловлена тем, что электрическое поле между его обкладками обладает энергией. Напряженность E поля пропорциональна напряжению U, поэтому энергия электрического поля пропорциональна квадрату его напряженности.

Применение конденсаторов. Конденсаторы как накопители электрических зарядов и энергии электрического поля широко применяются в различных радиоэлектронных приборах и электротехнических устройствах. Они используются для сглаживания пульсаций в выпрямителях переменного тока, для разделения постоянной и переменной составляющих тока, в электрических колебательных контурах радиопередатчиков и радиоприемников, для накопления больших запасов электрической энергии при проведении физических экспериментов в области лазерной техники и управляемого термоядерного синтеза.

 

 

БИЛЕТ 7

Уравнение состояния идеального газа Изопроцессы

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти неличины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона:

,

где — давление, — объем, — массa, - молярная масса, — универсальная газовая постоянная (). Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К.

Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.

Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.

Изотермическим называют процесс, протекаю-щий при постоянной температуре: . Он описывается законом Бойля—Мариотта: .

Изохорным называют процесс, протекающий при постоянном объеме: . Для него справедлив закон Шарля: .

Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид при и называется законом Гей-Люссака. Все изопроцессы можно изобразить графически. На рисунке 11 представлены в различных координатах графики процессов: изотермического (изотерма АВ), изобарного (изобара АС) и изохорного (изохора ВС).

Реальные газы удовлетворяют уравнению состоя ния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежимо мал по сравнению с объемом сосуда, в котором находится газ) и при не слишком низких температуpax (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.

 

БИЛЕТ 8

Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Основными доказательствами этих положений считались:

Диффузия

Броуновское движение

Изменение агрегатных состояний вещества

В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

 

Основное уравнение МКТ

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Вывод основного уравнения МКТ

Пусть имеется кубический сосуд с ребром длиной l и одна частица массой m в нём.

Обозначим скорость движения vx, тогда перед столкновением со стенкой сосуда импульс частицы равен mvx, а после — − mvx, поэтому стенке передается импульс p = 2 mvx. Время, через которое частица сталкивается с одной и той же стенкой, равно .

Отсюда следует:

Так как давление , следовательно сила F = p * S

Подставив, получим:

Преобразовав:

Так как рассматривается кубический сосуд, то V = Sl

Отсюда:

.

Соответственно, и .

Таким образом, для большого числа частиц верно следующее: , аналогично для осей y и z.

Поскольку , то . Это следует из того, что все направления движения молекул в хаотичной среде равновероятны.

Отсюда

или .

Пусть — среднее значение кинетической энергии всех молекул, тогда:

, откуда .Для одного моля выражение примет вид

 

 

БИЛЕТ 9

Насыщенный и ненасыщенный пар. Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала процесса испарения концентрация вещества в газообразном состоянии достигает такого значения, при котором число молекул, возвращающихся в жидкость в единицу времени, становится равным числу молекул, покидающих поверхность жидкости за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества.

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным.

При сжатии насыщенного пара концентрация молекул пара увеличивается, равновесие между процессами испарения и конденсации нарушается и часть пара превращается в жидкость. При расширении насыщенного пара концентрация его молекул уменьшается и часть жидкости превращается в пар. Таким образом, концентрация насыщенного пара остается постоянной независимо от объема. Так как давление газа пропорционально концентрации и температуре (p = nkT), давление насыщенного пара при постоянной температуре не зависит от объема.

Интенсивность процесса испарения увеличивается с возрастанием температуры жидкости. Поэтому динамическое равновесие между испарением и конденсацией при повышении температуры устанавливается при больших концентрациях молекул газа.

Давление идеального газа при постоянной концентрации молекул возрастает прямо пропорционально абсолютной температуре. Так как в насыщенном паре при возрастании температуры концентрация молекул увеличивается, давление насыщенного пара с повышением температуры возрастает быстрее, чем давление идеального газа с постоянной концентрацией молекул

КИПЕНИЕ - процесс активного парообразования во всем объеме жидкости. Сопровождается образованием и ростом пузырьков пара внутри жидкости. Пузырьки образуются около центров парообразования (примеси, микротрещины).

Кипение происходит:

1. во всем объеме,

2. при постоянной температуре (температура кипения). Поэтому требует постоянного притока тепла.

Температура кипения определяется

1. свойствами жидкости (таблица т-р кипения).

2. внешними условиями (давлением).

Условие роста пузырьков: pпара>pатм+rgh - следовательно, с понижением атм. давлениятемп-ра кипения понижается.

Условие подъема пузырька: FАрх ³ mg.

ВЛАЖНОСТЬ. ВОЗДУХА - величина, характеризующая содержание водяных паров в воздухе.

АБСОЛЮТНУЮ влажность измеряют плотностью водяного пара в воздухе (r, ,) или его парциальным давлением p (Па).

 

ОТНОСИТЕЛЬНАЯ влажность показывает, сколько процентов составляет абсолютная влажность от необходимой для насыщения воздуха при данной температуре: .

Температура, при которой воздух в процессе своего охлаждения становится насыщенным водяными парами, наз. точкой росы

Кристаллические и аморфные состояния вещества.

Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.



Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств. Большинство твердых тел имеют поликристаллическое строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны. Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определенная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

 

 

БИЛЕТ 10

Электри́ческий ток — упорядоченное нескомпенсированное движение электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, вэлектролитах — ионы (катионы и анионы), в газах - ионов и электронов, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

 

В медицине электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии.

Различают постоянный (англ. direct current, DC — постоянный ток) и переменный (англ. alternating current, AC — переменный ток) ток.

· Постоянный ток — ток, направление и величина которого слабо меняется во времени.

· Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты вытесняется на поверхность проводника, этот эффект называется скин-эффектом.

Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.


Мощность по определению N = A/t, следовательно,

Русский ученый X. Ленд и английский ученый Д. Джоуль опытным путем в середине прошлого века установили независимо друг от друга закон, который называется законом Джоуля — Ленца и читается так: при прохождении тока по проводнику количество теплоты, выделившееся в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. .

Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источ-ник тока (рис. 25). Как один из участков цепи, источник тока обладает сопротивлением, которое

называют внутренним, r.



Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она появляется за счет работы по перемещению зарядов, которую производят силы неэлектрического происхождения (сторонние силы) против сил электрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭДС — электродвижущая сила источника. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к величине этого заряда



тивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I = E/(R + г). Эту зависимость опытным путем получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

БИЛЕТ 11

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.[1] Магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозон-фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля)[2]. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах.

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Можно также рассматривать магнитное поле как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитные волны.

 

Магнитное поле формируется изменяющимся во времени электрическим полем либо собственными магнитными моментами частиц. Кроме того, магнитное поле может создаваться током заряженных частиц.

 




Дата добавления: 2015-01-30; просмотров: 35 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.032 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав