Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Алгоритм Копперсмита — Винограда (1990)

Читайте также:
  1. Алгоритм взятия мазка из носа и зева.
  2. Алгоритм внутривенной инъекции
  3. Алгоритм выбора Н или НН в разных частях речи
  4. Алгоритм выполнения задания
  5. Алгоритм выполнения расчетов.
  6. Алгоритм действий медсестры при критическом снижении температуры
  7. Алгоритм действия.
  8. Алгоритм действия.
  9. Алгоритм действия.
  10. Алгоритм Деккера

В 1990 Копперсмит и Виноград[6] опубликовали алгоритм, умножающий матрицы со сложностью O(n2.3727). [7] Этот алгоритм использует идеи, схожие с алгоритмом Штрассена. На сегодняшний день алгоритм Копперсмита-Винограда является наиболее асимптотически быстрым, но он эффективен только на очень больших матрицах и поэтому не применяется.

Алгоритмы с использованием теории групп (2003)

В 2003 Кох и др. рассмотрели в своих работах[8] алгоритмы Штрассена и Копперсмита-Винограда в контексте теории групп. Они показали возможность существования алгоритмов умножения матриц со сложностью Θ(n2) [9].

3.

Рассмотрим квадратную матрицу

.

Обозначим Δ =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В есть обратная матрица для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Обратная матрица матрице А, обозначается через А-1, так что В = А-1 и вычисляется по формуле

, (1)

где А i j - алгебраические дополнения элементов a i j матрицы A..

Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицыможно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10. Для матрицы найти A-1.

Решение. Находим сначала детерминант матрицы А
значит, обратная матрица существует и мы ее можем найти по формуле: , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.

откуда .

Пример 2.11. Методом элементарных преобразований найти A-1 для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы: ~ . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной матрицей к данной матрице А. Итак,
.

4.

2.5. Определители матриц и их свойства

Квадратную матрицу порядка n можно сопоставить с числом (или , или ), называемым определителем или детерминантом.

Вычисление определителя:

;

,

т. е. правило:

;

т. е. Правило треугольника (или Саррюса):

.

Отметим следующие свойства определителей:

– определители не изменяются, если его строки заменить столбцами и наоборот (строки и столбцы это ряд определителя);

– при перестановке двух параллельных рядов определитель меняет знак;

– определитель, имеющий два одинаковых ряда, равен нулю;

– общий множитель элементов какого-либо рода определителя можно вынести за знак определителя;

– если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму соответственных определителей;

– определитель не изменяется, если к элементам одного ряда прибавить соответствующие элементы параллельного ряда, умноженные на любое число;

Дальнейшие свойства связаны с понятием минора и алгебраического дополнения.

 

5.

Миноры и алгебраические дополнения.

Определение. Минором элемента определителя – го порядка называют определитель – го порядка, который получается из данного определителя вычеркиванием - й строки и – го столбца, на пересечении которых стоит элемент .

Обозначение: .

Определение. Алгебраическим дополнением элемента определителя – го порядка называют его минор, взятый со знаком плюс, если – четное число и со знаком минус в противном случае.

Обозначение: .

Пример. В определителе 3 – го порядка

.

найти все миноры и алгебраические дополнения элементов второго столбца.

Решение.

, ,

, ,

, .

Ответ:

, .




Дата добавления: 2015-01-30; просмотров: 39 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав