Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод хорд

Читайте также:
  1. D. Прочие методы регулирования денежно-кредитной сферы
  2. I метод отпечатка на липкой ленте.
  3. I. АДМИНИСТРАТИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ ПРИРОДООХРАННОЙ ДЕЯТЕЛЬНОСТЬЮ
  4. I. Методические рекомендации
  5. I. Методы эмпирического исследования.
  6. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  7. I.4. МЕТОДЫ ИЗУЧЕНИЯ СПЕЦКУРСА
  8. II Биохимические методы
  9. II Методы очистки выбросов от газообразных загрязнителей.Метод абсорбции.
  10. II Методы очистки сточных вод от маслопродуктов.Принцип работы напорного гидроциклона.

?

Метод Ньютона (метод касательных)

Пусть найдено приближенное значение корня уравнения f(x) = 0, обозначим его xn. Расчетная формула метода Ньютона для определения очередного приближения xn+1 может быть получена двумя способами.

Первый способ выражает геометрический смысл метода Ньютона и состоит в том, что вместо точки пересечения графика функции y = f(x) с осью OX, мы ищем точку пересечения с осью OX касательной, проведенной к графику функции в точке (xn, f(xn)) как показано на рис. 2.10. Уравнение касательной имеет вид .

 

В точке пересечения касательной с осью OX переменная y = 0. Приравнивая y нулю, выразим x и получим формулу метода касательных:

(2.6)

Второй способ. Разложим функцию f(x) в ряд Тейлора в окрестности точки x = xn:

Ограничимся линейными относительно (x – xn) слагаемыми, приравняем нулю f(x) и, выразив из полученного уравнения неизвестное x и обозначив его через xn+1, мы получим формулу (2.6).

Приведем достаточные условия сходимости метода Ньютона.

Теорема 2.4.Пусть на отрезке выполняются условия:

1) функция и ее производные и непрерывны;

2) производные и отличны от нуля и сохраняют определенные постоянные знаки;

3) (функция меняет знак на отрезке).

Тогда существует отрезок , содержащий искомый корень уравнения , на котором итерационная последовательность схо­дит­­ся. Если в качестве нулевого приближения выбрать ту граничную точку , в которой знак функции совпадает со знаком второй производной, т.е. , то итерационная последовательность сходится монотонно.


Дата добавления: 2015-02-16; просмотров: 6 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав