Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Правило 3

Читайте также:
  1. Аксиома (правило) параллелограмма сил
  2. В зубе 24 определяется, как правило
  3. В монархиях глава государства, как правило, получает и передает свой титул и пост по наследству.
  4. В странах запада премьер назначается как правило главой гос-ва или парламентом, или по его представлению. Способ образования правительства зависит от формы правления.
  5. Виды дисперсий и правило их сложения
  6. Влияние температуры на скорость химической реакции. Правило Вант-Гоффа
  7. Вопрос 1. Электромагнитная индукция, примеры этого явления. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.
  8. Вопрос. Потребительское поведение и правило максимизации полезности
  9. Денежное правило Фридмана
  10. Долгосрочное равновесие денежного рынка. Монетарное правило М. Фридмена

Правило 1

Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.

По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:

(F + G)’ = F’ + G’ = f + g.

Правило 2

Если F есть первообразная для некоторой функции f, а k – некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.

Имеем: (k*F)’ = k*F’ = k*f.

Правило 3

Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).

 

 

3) Таблица первообразных (неопределенных интегралов).

 

4) Множество всех первообразных некоторой функции f (x) называется неопределенным интегралом функции f (x) и обозначается как

Св1:Производная от неопределенного интеграла равна подинтегральной функции (∫f(x)dx)1 =f(x)

Док-во: Т.к. F(x) является первообразной для функции f(x) то справедливо выражение F1(x)= f(x) продиференцируем ∫f(x)dx = F(x)+ c получим (∫f(x)dx)1 = F1(x)+ c= f(x)

Св2: Диф от неопред интеграла равен подинтегральному выражению d(∫f(x)dx) =f(x)dx

Док-во: d(∫f(x)dx) =(f(x)dx)1dx= f(x)dx

Св3: Неопред интеграл от алгебраической суммы фун равен сумме неопред интеграла от каждого слагаемого ∫(f(x)+ g(x))dx =∫f(x)dx+∫g(x)dx

5) Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).

I. Величина определенного интеграла не зависит от обозначения переменной интегрирования, т.е. , где х, t – любые буквы.

II. Определенный интеграл с одинаковыми пределами интегрирования равен нулю.

III. При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный.

IV. Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутке [a,b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам.

V. Постоянный множитель можно выносить за знак определенного интеграла.

VI. Определенной интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций.

 

6) Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке [ a;b ] функции f, осью Ox и прямыми x = a и x = b.


«вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала Графики и свойства элементарных функций и статьи о геометрических преобразованиях графиков.

 

7) Аксиома 1.
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Аксиома 2.
Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).

Аксиома 3.
Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.




Дата добавления: 2015-02-16; просмотров: 19 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав