Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Генетическая инженерия, ее задачи, методы, возможности. Значение генетической инженерии в решении продовольственных проблем, лечении наследственных заболеваний.

Читайте также:
  1. A) Множество пар (имя атрибута, значение атрибута)
  2. AND(Логическое значение 1; Логическое значение 2 ...Логическое значение 30)
  3. Cущность и общественное значение средств массовой информации
  4. G]3:1:По какой из приведенных ниже формул рассчитывается абсолютное значение одного процента (1%) прироста?
  5. I. Значение изучаемого материала
  6. I. Значение математики в медицине
  7. I. Назначение методических рекомендаций
  8. II. Задачи, упражнения, комментарии
  9. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  10. Microsoft Excel. Назначение и синтаксис функций ВПР, ИНДЕКС.

Генетическая инженерия – направление молекулярной биологии и генетики, занимается направленным изменением биол-кой инф-ии клеток или организмов для получения живых существ с заданными фенотипическими характеристиками. Задачи генетической инженерии разнообразны, что объясняет разные уровни ее применения – организменный, клеточный, генный.

Представление об организменном уровне применения генетической инженерии дает пример аллофенных животных. Тела их состоят из генотипически разных тканей, развившихся из клеток неск-их родителей, искусственно объединенных в данном потомке. На кл-ом уровне применения – путем соматической гибридизации получают гибриды, совмещающие в 1ой кл генотипы орг-мов разных биол-ких видов. На генном уровне – объединяет в себе методы получения отд-ых генов и введения их в геном др орг-мов с целью изменить фенотип последних.

Селекционеры путем пересадки генов азобактерий пытаются получить растения, фиксирующие азот из воздуха. Некоторые перспективы открываются в области медицины. Введение в организм соответствующих генов при дефектности собственных устранит наследственно обусловленные нарушения обмена веществ.

Генная инженерия служит мощным орудием изменения наследственности живых организмов на благо человека. Но безответственность в исследованиях такого рода таит опасность глобальной катастрофы в связи с появлением патогенных свойству микроорганизмов, в обычных условиях безвредных для человека.

Формы изменчивости, их значение в онтогенезе и эволюции.

Изменчивость – св-во живых систем приобретать изменения и сущ-ть в разл-ых вариантах.

Благодаря наследственности достигается единообразие плана строения, механизмов развития и жизнеобеспечения организмов 1го вида. Разнообразие деталей строения и физиол-их отправлений особей, наблюдаемое на фоне указанного единообразия, зависит от изменчивости.

Изменчивость является результатом различных процессов. Некоторые из них происходят в наследственном материале (генотипе). Другие ограничиваются фенотипом. В соответствии с этим выделяют изменчивость генотипическую и фенотипическую. Фенотипическая подразделяется на модификационную и случайную; а генотипическая, в зависимости от природы измен-хся кл, - на генеративную и соматическую с выделением в них мутационной и комбинативной изменчивости.

Модификационная изменчивость. Адаптивный характер модификаций. Норма реакции генетически детерминированных признаков. Пенетрантность и экспрессивность проявления действия генов. Роль наследственности и среды в развитии, обучении и воспитании человека.

Ненаследственная: фенотипическая (модификационная). Модификации – фенотип-ие изменения, возникающие под влиянием условий ср. Возникшее конкретное модиф-ное изменение признака не наследуется, но диапазон модификационной изменчивости (норма реакции) ген-ки обусловлен и наследуется. Модификационные изменения не влекут за собой изм-ий генотипа.

Степень фенотипического проявления гена – экспрессивность, зависит от факторов внеш. ср. и влияния др факторов. Кол-но степень экспрессивности измеряется с помощью статистики.

Пенетрантность – частота проявления гена, выраженная в процентном соотношении числа особей имеющих данный признак к числу особей имеющих данный ген. Может быть полной (аллель проявляется у всех особей) и неполной (аллель проявляется не у всех особей). Различная степень пенетрантности и экспрессивности имеет огромное значение для медицины.

33. Мутационная изменчивость. Классификация мутаций: генные, хромосомные, геномные. Мутации в половых и соматических клетках. Репарация генетического материала. Мутации, связанные с нарушением репарации, их роль в патологии. Фенотипический эффект мутаций. Закон гомологических рядов (Н.И. Вавилов).

Мутационная изменчивость – обусловлена реорганизацией воспроизводящих структур, изменением ее генетического аппарата. Мутации возникают независимо, скачкообразно, что иногда резко отличает организм от исходной формы. С мутационной изменчивостью связана эволюция – процесс образования новых видов, сортов и пород. Выделяют: а) геномная – мутации, связанные с изменением числа хромосом, увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза (полиплоидия) или число хромосом, в результате нарушения митоза и мейоза, изменяется и становиться не кратным гаплоидному набору; б) хромосомные – возникают в результате перестройки хромосом, вследствие потери хромосомой участка, включением лишнего дублирующего участка хромосомы, приразрыве и перевороте участка на 1800 или участок хромосомы из одной пары прикрепляется к негомологичной хромосоме; в) генные – затрагивают структуру самого гена, могут изменять уч-ок м-лы ДНК различной длины; г)соматические и генеративные – мутации возникают в любых кл-х.

Известно, что мутирование происходит в различных направлениях. Однако это многообразие подчиняется определенной закономерности. Это позволило Н.И. Вавилову сформулировать закон гомологических рядов в наследственной изменчивости: «Виды и роды. генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и форм».

Вавилов указал, что гомологические ряды часто выходят за пределы родов и даже семейств. Закон гомологических рядов позволяет предвидеть воз-ть появления мутаций, еще и не известных науке, к-ые могут использоваться в селекции для создания новых ценных для хоз-ва форм.

Хромосомные мутации, механизмы их возникновения. Понятие о хромосомных и генных болезнях. Мутагенные и канцерогенные факторы. Генетическая опасность загрязнения окружающей среды, меры защиты среды. Цитоплазматическая наследственность.

Хромосомные аберрации возникают в результате перестройки хромосом. Они являются следствием разрыва хромосом, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается.

Генетические болезни: нарушение ферментативных систем (инзимопатия); дефекты белков крови (гемоглабинопатия); дефекты структурных белков (кологеные белки).

В нач. 20в. были обнаружены факты, которые доказывали наличие в клетке внехромосомного наследственного материала, располагающегося в различных цитоплазматических структурах и определяющего особую цитоплазматическую наследственность.

Человек как специфический объект генетического анализа. Методы изучения генетики человека. Медико-генетический аспект брака, медико-генетическое консультирование. Значение генетики для медицины.

Гибридологический метод не применим!

Клиноко-гениалогический – в к. 19в. Гальтон, основан на построении родственных связей и прослеживании в ряду поколений определенного признака. Этапы: сбор данных обо всех родственниках пробанда; построение родственных связей; анализ и вывод. Позволяет установить: является ли признак наследственным; тип и характер наследования; зиготность лиц родителей; пенетрантность гена; вероятность рождения ребенка с данной патологией.

Близнецовый – позволяет выявить соотносительную роль генотипа и ср, пенетрантность аллеля.

Популяционно-статистический – основан на использовании закона Харди-Вайнберга, позволяющего определить частоту генов и генотипов в популяциях людей.

Цито-генетический – основан на микроскопическом исследовании кариотипа. Этапы: культивирование клеток человека на искусственных средах, производится ряд монипуляций, делается фото кариотипа, далее построение идиограммы.

Биохимические – на изучении активности ферментных систем, позволяющих выявить генные мутации, причины болезней и обмена в-тв. С помощью биохимических нагрузочных тестов можно выявить гетерозиготных носителей патологических генов.

Рекомбинантной ДНК – позволяет анализировать фрагменты ДНК находить, изолировать отдельные гены (сегменты) и устанавливать в них последовательность нуклеотидов.

Метод генетики соматических клеток – дают возможность изучить многие вопросы генетики в эксперименте. Для культивирования используются фибробласты и лимфоциты на искусственных питательных средах.

Биологическое моделирование определенных наследственных аномалий человека можно проводить на мутантных линиях животных, имеющих сходные нарушения.

Математическое моделирование – создание и изучение математических моделей. Применяется, когда невозможно использовать эксперименты.

Пренатальная дородовая диагностика.

Иммунологический – при изучении наследственных резус-факторов при резус-конфликте в организме женщины.

Дерматоглифика – изучает кожные узоры на пальцах, ладони, стопы. Нарушение узоров соответствует болезням, вспомогательный метод при исследовании болезней.

Р-2




Дата добавления: 2015-05-05; просмотров: 31 | Поможем написать вашу работу | Нарушение авторских прав

Эволюционно-обусловленные уровни организации живого. Элементарная единица и элементарное эволюционное явление на каждом из этих уровней. | Человек в системе природы. Специфика проявлений биологического и социального в человеке. | Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Специализация и интеграция клеток многоклеточного организма. | Наследственный аппарат клеток. Кодирование и реализация биологической информации. | Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение. | Оплодотворение. Партеногенез. Полиэмбриония. Половой диморфизм. Биологический аспект репродукции человека. | Основные положения хромосомной теории наследственности. Геном (генотип) как генетическая система клетки. Общая характеристика генотипа человека. | Ди- и полигибридное скрещивание. Независимое комбинирование неаллельных генов. Цитологические и статистические основы дигибридного скрещивания. | Сцепленное наследование. Наследование пола и признаков, сцепленных с полом. Летальные гены. Плейотропное действие гена. | Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Иммуногенетический гомеостаз. |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав