Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема Ролля. (Ролль (1652-1719)- французский математик)

Читайте также:
  1. а)Определители 2-го,3-го и п-го порядков (определения и из св-ва). б)Теорема Лапласа о разложении определителя по элементам строки или столбца.
  2. В. Н. Шацких, О. В. Кузнецова «Французский язык как второй иностранный».
  3. Внешние эффекты и общественное благо. Теорема Коуза.
  4. Интегральная теорема Лапласа.
  5. Линии магнитной индукции. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
  6. ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА
  7. Основные тенденции развития историко-литературного процесса в конце XIX – начале XX века. Французский символизм.
  8. Полные системы. Теорема Поста
  9. Полукольцо натуральных чисел и кольцо целых чисел. Теорема о делении с остатком. Наибольший общий делитель и наименьшее общее кратное двух чисел.
  10. Теорема (Абеля).

Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка e, a < e < b, в которой производная функция f(x) равная нулю,

f¢(e) = 0. Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки. Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M ¹ m.Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за e можно принять любую точку интервала. Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим e, a < e < b точку, в которой f(e) = M. Так как М- наибольшее значение функции, то для любого Dх (будем считать, что точка e + Dх находится внутри рассматриваемого интервала) верно неравенство: Df(e) = f(e + Dx) – f(e) £ 0 При этом

Но так как по условию производная в точке e существует, то существует и предел. Т.к.

то можно сделать вывод:

Теорема Ролля имеет несколько следствий: Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то существует по крайней мере одна точка e, a < e < b, такая, что f¢(e) = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю. Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.

 

 




Дата добавления: 2015-04-12; просмотров: 18 | Поможем написать вашу работу | Нарушение авторских прав

<== 1 ==> | 2 | 3 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав