Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

НАЧАЛО СОВРЕМЕННОЙ МАТЕМАТИКИ

Читайте также:
  1. C.) Анализ современной среды и деятельности человека показывает, что она может быть названа
  2. I. Значение математики в медицине
  3. Quot;Кровавое воскресенье". Начало революции
  4. Актуальные проблемы современной специальной психологии.
  5. Анализ состояния современной системы образования. Позитивные и негативные тенденции в развитии системы образования.
  6. Англо-американский проект по диагностике: начало современных кросс-культурных исследований в психиатрии
  7. Баланс хозяйственных средств предприятия на начало периода
  8. Бедность и маргинальность. Основные концепции изучения и измерения бедности. Проблемы бедности в современной России.
  9. Безумие русской смуты: начало революции 1905 года.
  10. Благотворительность. Организация, особенности и трудности в условиях современной России.

Наступление 16 в. в Западной Европе ознаменовалось важными достижениями в алгебре и арифметике. Были введены в обращение десятичные дроби и правила арифметических действий с ними. Настоящим триумфом стало изобретение в 1614 логарифмов Дж.Непером. К концу 17 в. окончательно сложилось понимание логарифмов как показателей степени с любым положительным числом, отличным от единицы, в качестве основания. С начала 16 в. более широко стали употребляться иррациональные числа. Б.Паскаль (1623-1662) и И.Барроу (1630-1677), учитель И.Ньютона в Кембриджском университете, утверждали, что такое число, как, можно трактовать лишь как геометрическую величину. Однако в те же годы Р.Декарт (1596-1650) и Дж.Валлис (1616-1703) считали, что иррациональные числа допустимы и сами по себе, без ссылок на геометрию. В 16 в. продолжались споры по поводу законности введения отрицательных чисел. Еще менее приемлемыми считались возникавшие при решении квадратных уравнений комплексные числа, такие как, названные Декартом «мнимыми». Эти числа были под подозрением даже в 18 в., хотя Л.Эйлер (1707-1783) с успехом пользовался ими. Комплексные числа окончательно признали только в начале 19 в., когда математики освоились с их геометрическим представлением.

Достижения в алгебре. В 16 в. итальянские математики Н.Тарталья (1499-1577), С.Даль Ферро (1465-1526), Л.Феррари (1522-1565) и Д.Кардано (1501-1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, было введено множество символов, в том числе +, -,?,, =, > и <. Самым существенным новшеством стало систематическое использование французским математиком Ф.Виетом (1540-1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней. Затем математики обратились к уравнениям, степени которых выше четвертой. Работая над этой проблемой, Кардано, Декарт и И.Ньютон (1643-1727) опубликовали (без доказательств) ряд результатов, касающихся числа и вида корней уравнения. Ньютон открыл соотношение между корнями и дискриминантом [b2 - 4ac] квадратного уравнения, а именно, что уравнение ax2 + bx + c = 0 имеет равные действительные, разные действительные или комплексно сопряженные корни в зависимости оттого, будет ли дискриминант b2 - 4ac равен нулю, больше или меньше нуля. В 1799 К.Фридрих Гаусс (1777-1855) доказал т.н. основную теорему алгебры: каждый многочлен n-й степени имеет ровно n корней.

Основная задача алгебры - поиск общего решения алгебраических уравнений - продолжала занимать математиков и в начале 19 в. Когда говорят об общем решении уравнения второй степени ax2 + bx + c = 0, имеют в виду, что каждый из двух его корней может быть выражен с помощью конечного числа операций сложения, вычитания, умножения, деления и извлечения корней, производимых над коэффициентами a, b и с. Молодой норвежский математик Н.Абель (1802-1829) доказал, что невозможно получить общее решение уравнения степени выше 4 с помощью конечного числа алгебраических операций. Однако существует много уравнений специального вида степени выше 4, допускающих такое решение. Накануне своей гибели на дуэли юный французский математик Э.Галуа (1811-1832) дал решающий ответ на вопрос о том, какие уравнения разрешимы в радикалах, т.е. корни каких уравнений можно выразить через их коэффициенты в помощью конечного числа алгебраических операций. В теории Галуа использовались подстановки или перестановки корней и было введено понятие группы, которое нашло широкое применение во многих областях математики.

Развитие теории групп служит хорошим примером преемственности творческой работы в математике. Галуа построил свою теорию, опираясь на работу Абеля, Абель опирался на работу Ж.Лагранжа (1736-1813). В свою очередь многие выдающиеся математики, в том числе Гаусс и А.Лежандр (1752-1833) в своих работах неявно использовали понятие группы. Ньютон не был чрезмерно скромен, когда заявил: «Если я видел дальше других, то потому, что стоял на плечах гигантов».

Аналитическая геометрия. Аналитическая, или координатная, геометрия была создана независимо П.Ферма (1601-1665) и Р.Декартом для того, чтобы расширить возможности евклидовой геометрии в задачах на построение. Однако Ферма рассматривал свои работы лишь как переформулировку сочинения Аполлония. Подлинное открытие - осознание всей мощи алгебраических методов - принадлежит Декарту. Евклидова геометрическая алгебра для каждого построения требовала изобретения своего оригинального метода и не могла предложить количественную информацию, необходимую науке. Декарт решил эту проблему: он формулировал геометрические задачи алгебраически, решал алгебраическое уравнение и лишь затем строил искомое решение - отрезок, имевший соответствующую длину. Собственно аналитическая геометрия возникла, когда Декарт начал рассматривать неопределенные задачи на построение, решениями которых является не одна, а множество возможных длин.

Аналитическая геометрия использует алгебраические уравнения для представления и исследования кривых и поверхностей. Декарт считал приемлемой кривую, которую можно записать с помощью единственного алгебраического уравнения относительно х и у. Такой подход был важным шагом вперед, ибо он не только включил в число допустимых такие кривые, как конхоида и циссоида, но также существенно расширил область кривых. В результате в 17-18 вв. множество новых важных кривых, таких как циклоида и цепная линия, вошли в научный обиход.

По-видимому, первым математиком, который воспользовался уравнениями для доказательства свойств конических сечений, был Дж.Валлис. К 1865 он алгебраическим путем получил все результаты, представленные в V книге Начал Евклида.

Аналитическая геометрия полностью поменяла ролями геометрию и алгебру. Как заметил великий французский математик Лагранж, «пока алгебра и геометрия двигались каждая своим путем, их прогресс был медленным, а приложения ограниченными. Но когда эти науки объединили свои усилия, они позаимствовали друг у друга новые жизненные силы и с тех пор быстрыми шагами направились к совершенству».

Математический анализ. Основатели современной науки - Коперник, Кеплер, Галилей и Ньютон - подходили к исследованию природы как математики. Исследуя движение, математики выработали такое фундаментальное понятие, как функция, или отношение между переменными, например d = kt2, где d - расстояние, пройденное свободно падающим телом, а t - число секунд, которое тело находится в свободном падении. Понятие функции сразу же стало центральным в определении скорости в данный момент времени и ускорения движущегося тела. Математическая трудность этой проблемы заключалась в том, что в любой момент тело проходит нулевое расстояние за нулевой промежуток времени. Поэтому определяя значение скорости в момент времени делением пути на время, мы придем к математически бессмысленному выражению 0/0.

Задача определения и вычисления мгновенных скоростей изменения различных величин привлекала внимание почти всех математиков 17 в., включая Барроу, Ферма, Декарта и Валлиса. Предложенные ими разрозненные идеи и методы были объединены в систематический, универсально применимый формальный метод Ньютоном и Г.Лейбницем (1646-1716), создателями дифференциального исчисления. По вопросу о приоритете в разработке этого исчисления между ними велись горячие споры, причем Ньютон обвинял Лейбница в плагиате. Однако, как показали исследования историков науки, Лейбниц создал математический анализ независимо от Ньютона. В результате конфликта обмен идеями между математиками континентальной Европы и Англии на долгие годы оказался прерванным с ущербом для английской стороны. Английские математики продолжали развивать идеи анализа в геометрическом направлении, в то время как математики континентальной Европы, в том числе И.Бернулли (1667-1748), Эйлер и Лагранж достигли несравненно бльших успехов, следуя алгебраическому, или аналитическому, подходу.

Основой всего математического анализа является понятие предела. Скорость в момент времени определяется как предел, к которому стремится средняя скорость d/t, когда значение t все ближе подходит к нулю. Дифференциальное исчисление дает удобный в вычислениях общий метод нахождения скорости изменения функции f (x) при любом значении х. Эта скорость получила название производной. Из общности записи f (x) видно, что понятие производной применимо не только в задачах, связанных с необходимостью найти скорость или ускорение, но и по отношению к любой функциональной зависимости, например, к какому-нибудь соотношению из экономической теории. Одним из основных приложений дифференциального исчисления являются т.н. задачи на максимум и минимум; другой важный круг задач - нахождение касательной к данной кривой.

Оказалось, что с помощью производной, специально изобретенной для работ с задачами движения, можно также находить площади и объемы, ограниченные соответственно кривыми и поверхностями. Методы евклидовой геометрии не обладали должной общностью и не позволяли получать требуемые количественные результаты. Усилиями математиков 17 в. были созданы многочисленные частные методы, позволявшие находить площади фигур, ограниченных кривыми того или иного вида, и в некоторых случаях была отмечена связь этих задач с задачами на нахождение скорости изменения функций. Но, как и в случае дифференциального исчисления, именно Ньютон и Лейбниц осознали общность метода и тем самым заложили основы интегрального исчисления.

Метод Ньютона - Лейбница начинается с замены кривой, ограничивающей площадь, которую требуется определить, приближающейся к ней последовательностью ломаных, аналогично тому, как это делалось в изобретенном греками методе исчерпывания. Точная площадь равна пределу суммы площадей n прямоугольников, когда n обращается в бесконечность. Ньютон показал, что этот предел можно найти, обращая процесс нахождения скорости изменения функции. Операция, обратная дифференцированию, называется интегрированием. Утверждение о том, что суммирование можно осуществить, обращая дифференцирование, называется основной теоремой математического анализа. Подобно тому, как дифференцирование применимо к гораздо более широкому классу задач, чем поиск скоростей и ускорений, интегрирование применимо к любой задаче, связанной с суммированием, например, к физическим задачам на сложение сил.




Дата добавления: 2015-01-30; просмотров: 23 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | <== 3 ==> | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав