Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные теоремы о пределах. Признаки существования предела

Читайте также:
  1. Cхемы вязания спицами для начинающих: основные узоры и схемы
  2. I. ОСНОВНЫЕ ПОЛОЖЕНИЯ.
  3. II. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕМЫ
  4. II. ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ
  5. III. Основные принципы патогенетической терапии вирусных гепатитов
  6. RAID массивы. История создания RAID массивов. Основные преимущества и недостатки RAID массивов всех уровней. Принципы работы.
  7. X. Основные направления развития по видам туризма
  8. А) Классические признаки воспаления
  9. А) Основные группы психически зависимых соматических расстройств
  10. А) Основные психофизические функции

Пусть и - функции, для которых существуют пределы при (): , .

Сформулируем основные теоремы о пределах:

1) Функция не может иметь более одного предела.

Предположим противное, т.е. что функция имеет 2 предела А и D, . Тогда на основании теоремы о связи бесконечно малых величин с пределами функции: , , где и - бесконечно малые величины при (). Вычитая почленно эти равенства, получим: , откуда . Это равенство невозможно, т.к. на основании свойства 1 бесконечно малых это величина бесконечно малая. Следовательно, предположение о существовании второго предела неверно.

2) Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.е.

.

3) Предел произведения конечного числа функций равен произведению пределов этих функций, т.е.

.

По условию и , следовательно, на основании теоремы о связи бесконечно малых величин с пределами функции: , , где и - бесконечно малые величины при (). Перемножая почленно оба равенства, получим:

.

На основании свойств бесконечно малых последние три слагаемые представляют величину, бесконечно малую при ().

Итак, функция представляет сумму постоянного числа и бесконечного малой . На основании обратной теоремы о связи бесконечно малых с пределами функции это означает, что .

В частности, постоянный множитель можно выносить за знак предела, т.е.

.




Дата добавления: 2015-09-11; просмотров: 30 | Поможем написать вашу работу | Нарушение авторских прав

Размеренность и базис векторного пространства | Решение системы линейных уравнений с неизвестными | Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса. | Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода). | Понятие функции одной переменной | Основные элементарные функции | Уравнение линии на плоскости | Общее уравнение прямой и его исследование | Рассмотрим частные случаи уравнения (3.6). | Предел числовой последовательности |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав