Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Задача о касательной

Читайте также:
  1. IV. Время как фактор и задача композиции. Изображение движения и время
  2. А вот задача возвращения в здоровый ритм с наименьшими потерями, куда более интересна для рассмотрения и прикладного использования.
  3. Быть четко увязаны с целями и задачами органов власти;
  4. ВАЖНЕЙШАЯ ЗАДАЧА
  5. Ваша задача: найти людей, которым нравится о вас рассказывать
  6. Ваша задача: сделайте так, чтобы молву о вас было легче передавать
  7. Ваша задача: участвуйте в беседе
  8. ГАЛЬМОВА ЗАДАЧА
  9. Глава 3 Замысловатая задача
  10. Глава XX: Новая задача.

Пусть на плоскости дана непрерывная функция и необходимо найти уравнение касательной к этой кривой в точке .

Уравнение прямой по точке , принадлежащей этой прямой, и угловому коэффициенту имеет вид: , где , ( - угол наклона прямой). Из (рис.5.1) найдем тангенс угла наклона секущей : . Если точку приближать к точке , то угол будет стремиться к углу , т.е. при . Следовательно, .

Из задачи о касательной следует геометрический смысл производной: производная f′ (x 0) есть угловой коэффициент (тангенс угла наклона) касательной, проведенной к кривой у=f′ (x) в точке х 0, т.е. k= f′ (x 0).

Следовательно, уравнение касательной к кривой y=f (x) в точке х 0 примет вид

Пример. Найти производную функции f (x)= х 2.

Решение. Придавая аргументу х приращение ∆ х, найдем соответствующее приращение функции:

Составим отношение:

Найдем предел этого отношения при ∆ х → 0:

 




Дата добавления: 2015-09-11; просмотров: 29 | Поможем написать вашу работу | Нарушение авторских прав

Общее уравнение прямой и его исследование | Рассмотрим частные случаи уравнения (3.6). | Предел числовой последовательности | Предел функции в бесконечности и в точке | Основные теоремы о пределах. Признаки существования предела | Свойства бесконечно малых величин | Второй замечательный предел. | Непрерывность функции | Если функция непрерывна в точке и , то существует такая окрестность точки , в которой . | Свойства функций, непрерывных на отрезке |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав