Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Несобственные интегралы от разрывной функции по конечному промежутку (второго рода).

Читайте также:
  1. Cущноcть, функции и клаccификация cоциальных технологий в cоциально-культурном cервиcе
  2. Funcio laesa (нарушение функции).
  3. I. Общая теория и функции систематической теории
  4. I. Функционалы , зависящие от одной функции
  5. II.1. Функции специального федерального государственного образовательного Стандарта для детей с нарушениями речи
  6. IV. Порядок и формы контроля за исполнением государственной функции
  7. А) Основные психофизические функции
  8. Алгоритм нахождения точек перегиба функции.
  9. Асимптоты графика функции
  10. Асимптоты графика функции

Функция может терпеть разрыв на левом конце отрезка , на правом конце или в некоторой внутренней точке с отрезка.

Пусть функция непрерывна на отрезке за исключением точки x= a, тогда несобственным интегралом второго рода от функции по отрезку называется предел =

.

Пусть функция непрерывна на отрезке за исключением точки x= b, тогда несобственным интегралом второго рода от функции по отрезку называется предел = .

Пусть функция непрерывна на отрезке за исключением точки x= , тогда несобственным интегралом второго рода от функции по отрезку называется = (интегралы в правой части определены выше).

Если указанные пределы существуют и конечны, то интегралы называются сходящимися, если предел бесконечен или не существует вообще, то интеграл расходится.

Если сходятся интегралы от функций , то сходятся интегралы от функций . Это следует из теорем о пределах.

Пример.

Интеграл расходится, так как пределы в правой части равенства бесконечны.

Заметим, если здесь формально применить формулу Ньютона-Лейбница (она неприменима, т.к. функция разрывна), получим ответ 2. Еще раз убеждаемся, что теоремы следует применять, внимательно проверяя условия их применимости.

Рассмотрим несобственный интеграл Дирихле второго рода .

.

При , интеграл расходится.

Итак, несобственный интеграл Дирихле второго рода сходится при расходится при

Замечание. Интегралы Дирихле первого и второго рода расходятся при n=1. При n>1 интеграл Дирихле первого рода сходится, а интеграл Дирихле второго рода расходится. При n<1 интеграл Дирихле первого рода расходится, а интеграл Дирихле второго рода сходится.

Признаки сравнения интегралов остаются верными и для интегралов второго рода. Эталонами сравнения служат обычно интегралы Дирихле и интегралы от показательной функции.

 

Примеры. сходится сравнением с несобственным интегралом Дирихле (n= ) по второму признаку сравнения. Вспомните, что сумма бесконечно малых функций в знаменателе эквивалентна при бесконечно малой наинизшего порядка малости. Можно доказать эквивалентность непосредственным вычислением предела.

расходится сравнением с интегралом по второму признаку сравнения.

 




Дата добавления: 2015-09-10; просмотров: 36 | Поможем написать вашу работу | Нарушение авторских прав

Свойства неопределенного интеграла. | Разложение рациональной дроби на элементарные. | Интегрирование элементарных рациональных дробей четырех типов. | Интегрирование рациональных функций от тригонометрических функций. | Интегрирование иррациональных функций. | Лекция 5. Определенный интеграл. | Свойства определенного интеграла. | Интеграл с переменным верхним пределом. | Формула Ньютона – Лейбница. | Методы вычисления определенного интеграла. |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав