Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Система третьего порядка.

Читайте также:
  1. I. Общая теория и функции систематической теории
  2. II. СИСТЕМА ОБЯЗАТЕЛЬСТВ ПОЗДНЕЙШЕГО ПРАВА
  3. IV. ФОРМЫ И МЕТОДЫ КОНТРОЛЯ, СИСТЕМА ОЦЕНОК
  4. SOS-система у E. coli
  5. V2: Лимфатическая система
  6. Автоматизированная система наблюдений и контроля окружающей среды.
  7. Акустична система
  8. Алмазы Третьего рейха
  9. АМЕРИКАНСКАЯ ГЛОБАЛЬНАЯ СИСТЕМА
  10. Антиблокировочная система тормозов (Стандартное оборудование для некоторых моделей)

Запишем уравнение автономной системы третьего порядка

.

 

Все корни характеристического уравнения действительны и различны.

 

.

Картину поведения фазовых траекторий довольно легко представить, рассматривая поведение фазовых траекторий в плоскостях, натянутых на пары собственных векторов. Этот случай уже изучен выше.

а)

В плоскостях , , , имеем устойчивые узлы. Такая точка покоя так и называется – устойчивый узел.

б) В плоскостях , , , имеем неустойчивые узлы. Такая точка покоя называется – неустойчивый узел.

а) б)

 

в) один корень имеет знак, противоположный остальным двум корням. Точка покоя в этом случае называется седло – узел и является неустойчивой точкой покоя.

Пусть, например, . Тогда в плоскости имеем неустойчивый узел, а в плоскостях , - седла. Если , то в плоскости имеем устойчивый узел, а в плоскостях , - седла.

 

.

 

Заметим, что в ситуациях узлов и седла – узел траектория, начавшись в определенном октанте, не переходит в другой октант.

 

2) - действительный корень характеристического уравнения, - комплексно сопряженная пара корней.

Заметим, что при изменении номера корней ситуация будет аналогичной.

В плоскости имеем фокус, устойчивый при , неустойчивый при .

а) . Такая точка покоя называется устойчивый фокус.

б) . Такая точка покоя называется неустойчивый фокус.

 

в) или . Такая особая точка называется седло – фокус и является неустойчивой.

В первом случае по оси точка по траектории приближается к плоскости и уходит от начала координат, так как на самой плоскости имеем неустойчивый фокус.

Во втором случае на плоскости имеем устойчивый фокус, поэтому траектория стремится к оси , но удаляется от начала координат по этой оси, так как .

 

 

 

 




Дата добавления: 2015-09-10; просмотров: 22 | Поможем написать вашу работу | Нарушение авторских прав

Лекции 19-20. Нормальные системы дифференциальных уравнений. | Первые интегралы. | Автономные системы и свойства их решений. | Фазовый поток. | Лекция 21. Системы линейных дифференциальных уравнений. | Теорема о структуре общего решения однородной системы. | Метод вариации произвольной постоянной. | Лекция 22. Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами. | Лекции 23-24. Устойчивость движения, классификация точек покоя, теоремы Ляпунова. | Теорема Ляпунова об устойчивости по первому приближению. |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав