Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Общие принципы расчета конструкции. Задачи и методы технической механики

Читайте также:
  1. Discourse Analysis (DA): общие замечания
  2. I. Абсолютные и средние показатели вариации и способы их расчета
  3. I. Общие компетенции.
  4. I. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  5. I. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  6. I. ОБЩИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  7. I. ОБЩИЕ ПОЛОЖЕНИЯ
  8. I. ОБЩИЕ ПОЛОЖЕНИЯ
  9. I. ОБЩИЕ ПОЛОЖЕНИЯ
  10. I. ОБЩИЕ ПОЛОЖЕНИЯ

Задачи и методы технической механики

Техническая механика - наука об инженерных методах расчета на прочность, жесткость и устойчивость элементов сооружений и деталей машин.

Прочность- это способность конструкции сопротивляться разрушению при действии на нее внешних сил (нагрузок).

Жесткость - способность элемента конструкции сопротивляться деформации.

Устойчивость - свойство системы сохранять свое начальное равновесие при внешних воздействиях.

Методами сопротивления материалов выполняются расчеты, на основании кото­рых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. Любая конструкция должна обладать надежностью при эксплуатации и быть экономичной.

Надежность конструкции обеспечивается, если она сохраняет прочность, жесткость и устойчивость при гарантированной долговечности. Ее экономичность в значительной мере определяется расходом материала, применением менее дефицитных конструкционных материалов, возможностью изготовления деталей по наиболее прогрессивным технологиям. Надежность и экономичность - противоречивые требования.

В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.

В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В теоретической механике рассматривают равновесие абсолютно твердого (недеформированного) тела, при составлении уравнений равновесия допустимы замена системы сил статически эквивалентной системой, перенос сил вдоль линии их действия, замена ряда сил их равнодействующей. При решении задач сопротивления материалов, подобные замены или перенос сил недопустимы.

В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел. В состав механики деформируемых тел входят также такие дис­циплины, как: теория упругости, теория пластичности, теория пол­зучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердо­го деформируемого тела заключается в подходах к решению задач.

Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены.

В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать приемлемые по точности результаты расчетов.

При этом главной задачей курса является формирование знаний для применения математического аппарата при решении при­кладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования инженерного мышления и подготовки кадров высшей квалификации по техническим специализациям.

Сопротивление материалов является основой для изучения курса «Детали машин» и различных специальных дисциплин, таких, как «Конструкция и прочность двигателей», «Конструкция и прочность летательных аппаратов» и т.п.

Зарождение науки о сопротивлении материалов относится к XVII в. и связано с работами знаменитого ученого того времени Галилео Галилея. Значительный вклад в ее развитие был сделан выдающимися учеными: Гуком, Бернулли, Сен-Венаном, Коши, Ламе, Эйлером и др. В России в конце XIX-начале XX века важные исследования в области сопротивления материалов провели русские ученые Д.И.Журавский, Ф.С.Ясинский, И.Г.Бубнов, С.П.Тимошенко и др.

 

Реальный объект и расчетная схема

В сопротивлении материалов, как и во всякой отрасли естествознания, исследование вопроса о прочности или жесткости реального объекта начинается с выбора расчетной схемы. Расчетная схема конструкции - его упрощенная схема, освобожденная от несущественных в данной задаче особенностей. Например, при расчете на прочность троса, поднимающего груз, можно не учитывать форму груза, сопротивление воздуха, изменение давления и температуры воздуха с высотой, силу тяжести троса и многие другие факторы, учет которых усложняет расчет троса, но практически не влияет на конечный результат. Трос, свитый из большого числа тонких проволочек, в данном примере можно рассматривать как однородный стержень круглого поперечного сечения, нагруженный растягивающей силой, сосредоточенной в месте крепления груза.

Загрузка...

При выборе расчетной схемы вводятся упрощения в геометрию реального объекта. Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса, оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями. Брусом называется геометрический объект, одно из измерений которого (длина) много больше двух других. Геометрически брус может быть образован путем перемещения плоской фигуры вдоль некоторой кривой, как это показано на рис. 1.1.

Эта кривая называется осью бруса, а плоская замкнутая фигура, располагающая свой центр тяжести на оси бруса и нормальная к ней, называется его поперечным сечением. Брус может иметь как постоянное, так и переменное поперечное сечение. Многие сложные конструкции на практике рассматриваются как комбинации элементов, имеющих форму бруса, поэтому в настоящей книге преимущественно рассматриваются методы расчета бруса как основного геометрического объекта изучения науки сопротивления материалов. Брус, работающий при растяжении, называется стержнем, при изгибе – балкой, при кручении – валом. Стержневые элементы, воспринимающие вертикальные сжимающие силы, называют стойками, а наклонные элементы - раскосами.Конструкцию, состоящую из соединенных изгибаемых стержней, называют рамой. Если же благодаря шарнирному соединению стержней все они работают только на растяжение или сжатие (от нагрузки, приложенной в узлах), то конструкцию называют фермой.

Рис. 1.1

 

Второй основной геометрической фор­мой, рассматриваемой в сопротивлении материалов, является оболочка, под которой подразумевается тело, у которого одно из измерений (толщина) намного меньше, чем два других. К оболочкам относятся различного рода резервуары, котлы, купола зданий, корпуса подводных лодок, обшивка фюзеляжа самолета и т.п.

Оболочка, срединная поверхность которой представляет собой плоскость, называется пластиной. Примером могут служить крыши и днища резервуаров, перекрытия зданий, различные диски и т.п.

Элемент конструкции, размеры которого во всех направлениях мало отличаются друг от друга, называется массивом. К ним относятся фундаменты сооружений, подпорные стенки и т.п.

 

Связи и опорные устройства

Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи, ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.

Основным видом связей в расчетной схеме является шарнирная связь.

Простой шарнир (рис. 1.2) накладывает две связи.

 

Рис. 1.2

В расчетную схему входит основание, т.е. тело, на котоpое опирается cистема в целом, считающееся неподвижной.

Неподвижность расчетной схемы относительно основания обеспечивается опорными связями (опорами).

Все опорные связи условно делятся на три основных типа:

- Подвижная шарнирная опора (рис.1.3, а). Такая опора не препятствует вращению конца бруса и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через ось катка (R).

- Неподвижная шарнирная опора (рис.1.3, б). Такая опора допускает вращение конца бруса, но устраняет поступательное движение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие, одна из которых направлена вдоль оси бруса (Н), другая - перпендикулярно к оси бруса (R).

- Жесткая заделка или защемление (рис.1.3, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре в общем случае может возникать реакция, которую обычно раскладывают на две составляющие (Hи R) и момент защемления (М).

При рассмотрении реального объекта в число внешних сил включаются не только заданные нагрузки, но и реакции связей (опор), дополняющие систему сил до равновесного состояния.

 

Рис. 1.3

Внешние и внутренние силы. Метод сечений

Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные(независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями.

По способу приложения внешние силы делятся на объемные и поверхностные.

Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных сил является сила, отнесенная к единице объема - кН/м3.

Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рас­сматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенныеи распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воз­действие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Примером может служить собственный вес балки, действие снеговой или ветровой нагрузки на сооружение, давление жидкости в резервуаре. Распределенная нагрузка может действовать и по линии как, например, при соприкасании двух цилиндров при параллельном расположении их осей. Сосредоточенные усилия измеряются в кН, а распределенные - кН/м2 или кН/м.

По времени действия внешние нагрузки (силы) разделяются на постоянныеи временные. Собственный вес зданий – это постоянно действующая нагрузка; поезд, идущий через мост, - это нагрузка временная.

По характеру изменения силы во времени различают нагрузки статические и динамические. Статические нагрузки (постоянные) - такие, которые изменяют свою величину или точку приложения (направление) с очень небольшой скоростью, так что возникающими при этом ускорениями (силами инерции) можно пренебречь. Динамическиенагрузки - изменяются во времени с большой скоростью, при этом силы инерции должны быть учтены, так как оказывают существенное влияние на конструкцию. Динамические нагрузки подразделяются на внезапно приложенные, повторно-переменные и ударные. Примером внезапно приложенной нагрузки может служить действие веса железнодорожного состава, проходящего через мост; повторно-переменной – нагрузка на шатун в двигателе внутреннего сгорания; ударной – действие силы удара молота на его фундамент или гидравлический удар в гидросистеме. Ударные нагрузки возникают также в случае плохой пригонки или износа сопряженных деталей, когда зазоры превышают величину, допустимую по конструктивным и технологическим условиям. Например, при износе зубьев шестерен или деталей шариковых подшипников в машине возникают характерные стуки, свидетельствующие о возникновении ударных нагрузок, быстро приводящих к выходу конструкции из строя.

Скорость роста усилий при динамическом нагружении не обеспечивает равновесности процессов, протекающих в материале, в результате чего возникают многочисленные нарушения внутренней структуры материала. При систематическом чередовании нагружения и разгрузки накопление дефектов структуры ведет к возникновению микроскопических трещин, слияние которых приводит к усталостному разрушению.

Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами,которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой.

В брусе сечение проводят перпендикулярно его оси. Такое сечение называют поперечным.

Величины внутренних усилий определяются с применением метода сечений,суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.

Рассмотрим тело, имеющее форму бруса (рис. 1.4, а).

Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn , удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия.

Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.4, б).

Рис. 1.4

 

Обозначая через и суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что

для отсеченных частей бруса получим следующие очевидные соотношения:

Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит названиеусловия неразрывности деформаций.

Воспользуемся правилами статики и приведем систему внутренних сил PA к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил и главный вектор момента (рис. 1.5). Далее выбираем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось z направим по нормали к сечению, а оси x и y расположим в плоскости сечения. Спроектировав главный вектор сил и главный момент на координатные оси x, y, z, получаем шесть составляющих: три силы Nz , Qx , Qy и три момента Mz , Mx , My , называемых внутренними силовыми факторами в сечении бруса.

Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My - изгибающими моментамиотносительно осей x и y, соответственно.

При известных внешних силах все шесть внутренних силовых факторов в сечении определяются из шести уравнений равновесия, которые могут быть составлены для отсеченной части.

Пусть R*, M* - результирующая сила и результирующий момент, действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид:

Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат:

которые, в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: , , .

Рис. 1.5

 

Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела.

В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют - такие виды нагружения бруса получили специальные названия (табл.1.1).

 

Таблица 1.1. Простейшие случаи сопротивления

Вид напряженного состояния Nz Qx Qy Mz Mx My
Растяжение/сжатие +
Кручение +
Чистый изгиб относительно оси х +
Чистый изгиб относительно оси у +
Поперечный изгиб относительно оси х + +
Поперечный изгиб относительно оси у + +

Примечание: + означает наличие усилия, 0 - его отсутствие.

 

Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий (например, изгиб с кручением) сопротивление бруса называетсясложным.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называются эпюрами.

 

Напряжения

При определении внутренних силовых факторов их считают приложенными в центре тяжести сечения. В действительности внутренние силы, являясь результатом взаимодействия частиц тела, непрерывно распределены по сечению. Интенсивность этих сил в разных точках сечения может быть различной. При увеличении нагрузки на элемент конструкции увеличиваются внутренние силы и соответственно увеличивается их интенсивность во всех точках сечения. Если в некоторой точке интенсивность внутренних сил достигнет определенного для данного материала значения, в этой точке возникает трещина, развитие которой приведет к разрушению элемента, или возникнут недопустимые пластические деформации. Следовательно, о прочности элементов конструкций следует судить не по значению внутренних силовых факторов, а по их интенсивности. Меру интенсивности внутренних сил называют напряжением.

В окрестности произвольной точки, принадлежащей сечению некоторого нагруженного тела, выделим элементарную площадку , в пределах которой действует внутреннее усилие ∆F (рис. 1.6, а).

Среднее значение интенсивности внутренних усилий на площадке, называемое средним напряжением, определяют по формуле

Уменьшая площадь ∆A, в пределе получаем истинное напряжение в данной точке сечения

Векторная величина p называется полным напряжением в точке. В международной системе единиц (СИ) за единицу напряжения принят паскаль (Па) – это напряжение, при котором на площадке 1 м2 действует внутренняя сила 1 Н.

Так как эта единица очень мала, в расчетах используют кратную единицу напряжения – мегапаскаль (1 МПа=106 Па).

Разложим вектор полного напряжения p на две составляющие (рис.1.6, б).

Проекция вектора полного напряжения p на нормаль к данной площадке обозначается через σ и называется нормальным напряжением.

Рис. 1.6

Составляющую, лежащую в сечении в данной площадке обозначается через τ и называется касательным напряжением.

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению – отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие и (рис.1.6, в). Первый индекс при τ показывает, какая ось перпендикулярна сечению, второй – параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов.

Между полным напряжением и его составляющими существует зависимость

Через точку тела можно провести бесконечное число сечений и для каждого из них напряжения имеют свое значение. Следовательно, при определении напряжений необходимо указывать положение не только точки тела, но и сечения, проведенного через эту точку.

Совокупность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке.

Напряжения в поперечных сечениях связаны с внутренними силовыми факторами определенными зависимостями.

Возьмем в сечении бесконечно малую площадку площадью dA. По этой площадке в общем случае действуют бесконечно малые (элементарные) внутренние силы (рис. 1.7)

Рис.1.7

 

Соответствующие элементарные моменты относительно координатных осей x, y, z имеют вид:

Просуммировав бесконечно малые силы и моменты, действующие в сечении, получим выражения, связывающие внутренние силовые факторы с напряжениями:

В соответствии с теоремой Вариньона, известной из теоретической механики, и зависимостью между напряжениями τ, и , выражение для можно записать в виде

где

Интегральные зависимости (1.8) можно использовать для определения напряжений по найденным методом сечений внутренним силовым факторам при условии, что известны законы распределения напряжений по сечению.

Перемещения и деформации

Под действием внешних сил твердые тела изменяют свою геометрическую форму, то есть деформируются. Если в теоретической механике тела считаются абсолютно жесткими, то в сопротивлении материалов тела обладают способностью деформироваться,т.е. под действием внешней нагрузки изменять свои начальные размеры и форму. Точки тела при этом неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т. деформированного состояния, называется вектором полного перемещения т. А (рис. 1.8, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно.

Для того, чтобы охарактеризовать интенсивность изменения формы и размеров тела, рассмотрим точки А и В его недеформированного состояния, расположенные на расстоянии S друг от друга (рис. 1.8, б).

Пусть в результате изменения формы тела эти точки переместились в положение и , соответственно, а расстояние между ними увеличилось на величину DS и составило S + DS. Величина

называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы , , .

 

Рис. 1.8

 

Линейные деформации , , характеризуют изменения объема тела в процессе деформирования, а формоизменения тела - угловыми деформациями. Для их определения рассмотрим прямой угол, образованный в недеформированном состоянии двумя отрезкамиОD и ОС (рис. 1.8, б). При действии внешних сил указанный угол DOC изменится и примет новое значение . Величина

называется угловой деформацией, или сдвигом в точке О в плоскости СОD. Относительно координатных осей деформации сдвига обозначаются , , .

Совокупность линейных и угловых деформаций по различным направлениям и плоскостям в данной точке образует деформированное состояние в точке.

 

Закон Гука и принцип независимости действия сил

Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Р.Гуком и носит название закона Гука.

В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.8, а) нагруженного тела по некоторому направ­лению, например, по оси x, а может быть выражено следующим образом:

где Р - сила, под действием которой происходит перемещение u; - коэффициент пропорциональности между силой и перемещением.

Очевидно, что коэффициент зависит от физико-механических свойств материала, взаимного расположения точки А и точки приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.

В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением.

Параметры E и G, входящие в эти формулы, называют модулями упругости материала соответственно первого и второго рода. Они характеризуют его сопротивляемость деформированию, или жесткость в упругой стадии деформации. Численные значения E и G для каждого конструктивного материала определяются экспериментально. Они имеют размерности напряжений. На практике удобно использовать единицы, кратные паскалю: мегапаскаль (1 МПа=106 Па) и гигапаскаль (1 ГПа=109 Па).

Системы, для которых соблюдается условие пропорциональности между напряжениями и деформациями, подчиняются принципу суперпозиции, или принципунезависимости действия сил.

В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности. Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем.

 

Допущения, применяемые в сопротивлении материалов

Для построения теории сопротивления материалов принимают некоторые допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.

1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.

С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот. Это допущение позволяет использовать в сопротивлении материалов методы математического анализа (дифференциальное и интегральное исчисления).

2. Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Материалы, имеющие различные свойства в разных направлениях, называютанизотропными (например, дерево). Отдельно взятый кристалл материала анизотропен, но т.к. в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен.

Металлы и сплавы, как правило, изотропны. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе.

3. Принимается, что до определенной величины деформации материалов подчиняются закону Гука и весьма малы относительно размеров тела, поэтому все расчеты выполняются по исходной, т.е. недеформированной, схеме, к которой применим принцип независимости действия сил.

4. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью.При решении большинства задач в сопротивлении материалов принимается, что материал конструк­ций абсолютно упругий. Это допущение справедливо, пока нагрузки не превышают определенного значения. При больших нагрузках в элементах конструкций появляются пластические деформации.

5. Перемещения, возникающие под действием внешних сил в упругом теле, малы по сравнению с его размерами. Это допущение называется принципом начальных размеров. Допущение позволяет при составлении уравнений равновесия пренебречь изменениями формы и размеров конструкции.

6. Предполагается, что в сечениях, достаточно удаленных от мест приложения нагрузки, характер распределения напряжений не зависит от конкретного способа нагружения. Основанием для такого утверждения служит принцип Сен-Венана, справедливый для любого типа напря­женного состояния и формулируемый следующим образом: особенности приложения внешних нагрузок проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня. Принцип Сен-Венана подробно рассмотрен в части 2.

7. Принимается гипотеза плоских сечений (гипотеза Бернулли), введенной швейцарским ученым Д. Бернулли, гласящей, что плоские поперечные сечения стержня до деформации остаются плоскими и после деформации.

8. Считается, что ненагруженное тело свободно от каких бы то ни было внутренних сил любой природы.

 


Дата добавления: 2015-01-05; просмотров: 22 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2019 год. (0.042 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав