Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Строение экосистемы

Читайте также:
  1. Amp;C) популяционные и экосистемы.
  2. III. Строение атома. Развитие периодического закона.
  3. V1: Экосистемы. Экология сообществ.
  4. Агроэкосистемы, их особенности. Отличия агроэкосистем от природных экосистем. Урбоээкосистемы.
  5. Анатомическое строение верхней и нижней челюсти. Общие черты и различия в их развитии и строении.
  6. Антропогеннные экосистемы.
  7. АНТРОПОГЕННЫЕ ЭКОСИСТЕМЫ
  8. Атмосфера: состав, строение, значение для географической оболочки
  9. Атомно-кристаллическое строение металлов. Элементарные кристаллические ячейки.
  10. Белки, строение, структура, их роль в организме.

Строение экосистемы (биогеоценоза) по Реймерсу Н. Ф.

В экосистеме можно выделить два компонента — биотический и абиотический. Биотический делится наавтотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества — консументы и редуценты) компоненты[4], формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1 — 1 %, редко 3 — 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровеньэкосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом[8][15].

Основные компоненты экосистемы [править | править вики-текст]

С точки зрения структуры в экосистеме выделяют[2]:

климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;

неорганические вещества, включающиеся в круговорот;

органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии;

продуценты — организмы, создающие первичную продукцию;

макроконсументы, или фаготрофы, — гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;

микроконсументы (сапротрофы) — гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

биофаги — организмы, поедающие других живых организмов,

сапрофаги — организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами[2]. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.

Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.

Экотоп [править | править вики-текст]

 

Изливающаяся в океан лава на острове Гавайи формирует новый прибрежный экотоп

Обычно понятие экотоп определялось как местообитание организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и др[16]. Однако, в этом случае это понятие фактически почти идентично понятию климатоп.

На данный момент под экотопом в отличие от биотопа понимается определённая территория или акватория со всем набором и особенностями почв, грунтов, микроклимата и других факторов в неизменённом организмами виде[17]. Примерами экотопа могут служить наносные грунты, новообразовавшиеся вулканические или коралловые острова, вырытые человеком карьеры и другие заново образовавшиеся территории. В этом случае климатоп является частью экотопа.

Климатоп [править | править вики-текст]

 

Зонирование территорий по типу климата (Схема Холдриджа)

Изначально «климатоп» был определён В. Н. Сукачёвым (1964) как воздушная часть биогеоценоза, отличающаяся от окружающей атмосферы своим газовым составом, особенно концентрацией углекислого газа в приземном биогоризонте, кислорода там же и в биогоризонтах фотосинтеза, воздушным режимом, насыщенностью биолинами, уменьшенной и изменённой солнечной радиацией и освещённостью, наличием люминесценции растений и некоторых животных, особым тепловым режимом и режимом влажности воздуха[18][19].

На данный момент это понятие трактуется чуть более широко: как характеристика биогеоценоза, сочетание физических ихимических характеристик воздушной или водной среды, существенных для населяющих эту среду организмов[20]. Климатоп задаёт в долговременном масштабе основные физические характеристики существования животных и растений, определяя круг организмов, которые могут существовать в данной экосистеме.

Эдафотоп [править | править вики-текст]

Под эдафотопом обычно понимается почва как составной элемент экотопа[21]. Однако более точно это понятие следует определять как часть косной среды преобразованной организмами, то есть не всю почву, а лишь её часть[17]. Почва (эдафотоп) является важнейшей составляющей экосистемы: в нём происходит замыкание циклов вещества и энергии, осуществляется перевод из мёртвого органического вещества в минеральные и их вовлечение в живую биомассу[17]. Основными носителями энергии в эдафотопе выступают органические соединения углерода, их лабильные и стабильные формы, они в наибольшей степени определяют плодородие почв.

 

Биоценоз, представленный в схематичном виде как пищевая сеть и его биотоп

Биотоп [править | править вики-текст]

«Биотоп» — преобразованный биотой экотоп или, более точно, участок территории, однородный по условиям жизни для определённых видов растений или животных, или же для формирования определённого биоценоза[22].

Биоценоз [править | править вики-текст]

Биоценоз — исторически сложившаяся совокупность растений, животных, микроорганизмов, населяющих участок суши или водоёма (биотоп). Не последнюю роль в формировании биоценоза играет конкуренция и естественный отбор[23]. Основная единица биоценоза — консорция, так как любые организмы в той или иной степени связаны с автотрофами и образуют сложную систему консортов различного порядка, причём это сеть является консортом всё большего порядка и может косвенно зависеть от всё большего числа детерминантов консорций.

Также возможно разделение биоценоза на фитоценоз и зооценоз. Фитоценоз — это совокупность растительных популяций одного сообщества, которые и формируют детерминантов консорций. Зооценоз[24] — это совокупность популяций животных, которые и являются консортами различного порядка и служат механизмом перераспределения вещества и энергии внутри экосистемы (см. функционирование экосистем).

Биотоп и биоценоз вместе формируют биогеоценоз/экосистему.

Механизмы функционирования экосистемы[править | править вики-текст]

Устойчивость экосистем [править | править вики-текст]

Схема гомеостаза системы по Ю. Одуму

Экосистема может быть описана комплексной схемой прямых и обратных связей, поддерживающих гомеостаз системы в некоторых пределах параметров окружающей среды[4]. Таким образом, в некоторых пределах экосистема способна при внешних воздействиях поддерживать свою структуру и функции относительно неизменными. Обычно выделяют два типа гомеостаза: резистентный — способность экосистем сохранять структуру и функции при негативном внешнем воздействии (см. Принцип Ле Шателье — Брауна) и упругий — способность экосистемы восстанавливать структуру и функции при утрате части компонентов экосистемы[25]. В англоязычной литературе используются сходные понятия: локальная устойчивость — англ. local stability (резистентный гомеостаз) и общая устойчивость — англ. global stability (упругий гомеостаз)[15].

 

Коралловые рифы — пример хрупкости биоразнообразия

Иногда выделяют третий аспект устойчивости — устойчивость экосистемы по отношению к изменениям характеристик среды и изменению своих внутренних характеристик[15]. В случае, если экосистема устойчиво функционирует в широком диапазоне параметров окружающей среды и/или в экосистеме присутствует большое число взаимозаменяемых видов (то есть, когда различные виды, сходные по экологическим функциям в экосистеме, могут замещать друг друга), такое сообщество называют динамически прочным (устойчивым). В обратном случае, когда экосистема может существовать в весьма ограниченном наборе параметров окружающей среды, и/или большинство видов незаменимы в своих функциях, такое сообщество называется динамически хрупким (неустойчивым)[15]. Необходимо отметить, что данная характеристика в общем случае не зависит от числа видов и сложности сообществ. Классическим примером может служить Большой Барьерный риф у берегов Австралии (северо-восточное побережье), являющийся одной из «горячих точек» биоразнообразия в мире — симбиотические водоросли кораллов, динофлагелляты, весьма чувствительны к температуре. Отклонение от оптимума буквально на пару градусов ведёт к гибели водорослей, а до 50-60 % (по некоторым источникам до 90 %) питательных веществ полипы получают от фотосинтеза своих мутуалистов[26][27].

Различные положения равновесия систем (иллюстрация)

У экосистем существует множество состояний, в которых она находится в динамическом равновесии; в случае выведения из него внешними силами, экосистема совершенно необязательно вернётся в изначальное состояние, зачастую её привлечёт ближайшее равновесное состояние (аттрактор), хотя оно может быть очень близким к первоначальному[28].

Биоразнообразие и устойчивость в экосистемах [править | править вики-текст]

Основная статья: Биоразнообразие

 

Дождевые леса Амазонии, как и влажные экваториальные леса, являются местами наибольшего биоразнообразия

Обычно устойчивость связывали и связывают с биоразнообразием видов в экосистеме (альфаразнообразие), то есть, чем выше биоразнообразие, чем сложнее организация сообществ, чем сложнее пищевые сети, тем выше устойчивость экосистем. Но уже 40 и более лет назад на данный вопрос существовали различные точки зрения, и на данный момент наиболее распространено мнение, что как локальная, так и общая устойчивость экосистемы зависят от значительно большего набора факторов, чем просто сложность сообществ и биоразнообразие. Так, на данный момент с повышением биоразнообразия обычно связывают повышение сложности, силы связей между компонентами экосистемы, стабильность потоков вещества и энергии между компонентами[15].

 

Экваториальный дождевой лес может содержать более 5000 видов растений (для сравнения в лесах таёжной зоны — редко более 200 видов)

Важность биоразнообразия состоит в том, что оно позволяет формировать множество сообществ, различных по структуре, форме, функциям, и обеспечивает устойчивую возможность их формирования. Чем выше биоразнообразие, тем большее число сообществ может существовать, тем большее число разнообразных реакций (с точки зрения биогеохимии) может осуществляться, обеспечивая существование биосферы в целом[29].

Сложность и устойчивость экосистем [править | править вики-текст]

На данный момент не существует удовлетворительного определения и модели, описывающей сложность систем и экосистем в частности. Существует два широко распространённых определения сложности: колмогоровская сложность — слишком специализированное для применения к экосистемам. И более абстрактное, но тоже неудовлетворительное определение сложности, данное И. Пригожиным в работе «Время, хаос, квант»[30]: Сложные системы — не допускающие грубого или операционального описания в терминах детерминистских причинностей. В других своих трудах И. Пригожин писал, что не готов дать строгого определения сложности[31], поскольку сложное — это нечто, что на данный момент не может быть корректно определено.

Параметры сложности и их влияние на устойчивость [править | править вики-текст]

В качестве параметров сложности экосистем традиционно подразумевались общее число видов (альфа-разнообразие), большое число взаимодействий между видами, сила взаимодействий между популяциями и различные сочетания этих характеристик. При дальнейшем развитии этих представлений появилось утверждение, что чем больше путей переноса и преобразования энергии в экосистеме, тем она устойчивей при различных видах нарушений[32].

Однако, позже было показано, что данные представления не могут охарактеризовать устойчивость экосистем[15]. Существует множество примеров как весьма устойчивых монокультурных сообществ (фитоценозы орляка), так и слабоустойчивых сообществ с высоким биоразнообразием (коралловые рифы, тропические леса). В 70-80-х годах XX столетия усилился интерес к моделированию зависимости устойчивости от сложности экосистем[15][33][34][35][36]. Разработанные в этот период модели показали, что в случайным образом генерируемой сети взаимодействия в сообществе при удалении бессмысленных цепей (типа А ест В, В ест С, С ест А и подобного типа) локальная устойчивость падает с увеличением сложности. Если продолжить усложнение модели и учесть, что консументы испытывают влияние пищевых ресурсов, а пищевые ресурсы от консументов не зависят, то можно прийти к выводу о том, что устойчивость не зависит от сложности, либо также падает с её увеличением. Разумеется, такие результаты справедливы главным образом для детритных цепей питания, в которых консументы не влияют на поток пищевых ресурсов[37], хотя и могут менять пищевую ценность последних.

При изучении общей устойчивости на модели из 6 видов (2 хищника-консумента второго порядка, 2 консумента первого порядка и 2 вида в основании пищевой цепи) исследовалось удаление одного из видов. В качестве параметра устойчивости была принята связность. Сообщество считалось устойчивым, если остальные виды оставались локально устойчивыми. Полученные результаты согласовывались с общепринятыми воззрениями о том, что с повышением сложности при выпадении хищников высшего порядка устойчивость сообщества падает, но при выпадении оснований пищевой цепи с повышением сложности устойчивость повышалась[38].

В случае упругой устойчивости[39], когда под сложностью также понимается связность, с повышением сложности упругая устойчивость также повышается. То есть, большее разнообразие видов и большая сила связи между ними позволяет сообществам быстрее восстанавливать свою структуру и функции. Данный факт подтверждает общепринятые взгляды на роль биоразнообразия как некоего пула (фонда) для восстановления полноценной структуры как экосистем, так и более высокоорганизованных структур биосферы, а также самой биосферы в целом. На данный момент общепринятым и фактически неоспариваемым является представление о том, что биосфера эволюционировала в сторону увеличения биоразнообразия (всех трёх его компонентов), ускорения обращения вещества между компонентами биосферы, и «убыстрения» времени жизни как видов, так и экосистем[40][41].

Потоки вещества и энергии в экосистемах [править | править вики-текст]

 

Принципиальная схема потоков вещества и энергии в экосистеме, на примере системы ручьев Сильвер Спринг (англ. Silver Spring). По Одуму, 1971.

На данный момент научное понимание всех процессов внутри экосистемы далеко от совершенства, и в большей части исследований либо вся экосистема, либо некоторые её части выступают в качестве «чёрного ящика»[2]. В то же время, как любая относительно замкнутая система, экосистема характеризуется входящим и выходящим потоком энергии и распределением этих потоков между компонентами экосистем.

Продуктивность экосистем [править | править вики-текст]

У этого термина существуют и другие значения, см. продуктивность.

При анализе продуктивности и потоков вещества и энергии в экосистемах выделяют понятия биомасса и урожай на корню. Под урожаем на корню понимается масса тел всех организмов на единице площади суши или воды[15], а под биомассой — масса этих же организмов в пересчёте на энергию (например, в джоулях) или в пересчёте на сухое органическое вещество (например, в тоннах нагектар)[15]. К биомассе относят тела организмов целиком, включая и витализированные омертвевшие части и не только у растений, к примеру, кора и ксилема, но и ногти и ороговевшие части у животных. Биомасса превращается в некромассу только тогда, когда отмирает часть организма (отделяется от него) или весь организм. Часто зафиксированные в биомассе вещества являются «мёртвым капиталом», особенно это выражено у растений: вещества ксилемы могут сотнями лет не поступать в круговорот, служа только опорой растения[15].

Под первичной продукцией сообщества [42] (или первичной биологической продукцией) понимается образование биомассы (более точно — синтез пластических веществ) продуцентами без исключения энергии, затраченной на дыхание за единицу времени на единицу площади (например, в сутки на гектар).

Первичную продукцию сообщества разделяют на валовую первичную продукцию, то есть всю продукцию фотосинтеза без затрат на дыхание, и чистую первичную продукцию, являющуюся разницей между валовой первичной продукцией и затратами на дыхание. Иногда её ещё называют чистой ассимиляцией или наблюдаемым фотосинтезом [2]).

Чистая продуктивность сообщества [43] — скорость накопления органического вещества, не потребляемого гетеротрофами (а затем и редуцентами). Обычно вычисляется за вегетационный период либо за год[2]. Таким образом, это часть продукции, которая не может быть переработана самой экосистемой. В более зрелых экосистемах значение чистой продуктивости сообщества стремится к нулю (см. концепцию климаксных сообществ).

Вторичная продуктивность сообщества — скорость накопления энергии на уровне консументов. Вторичную продукцию не подразделяют на валовую и чистую, так как консументы только потребляют энергию, усвоенную продуцентами, часть её не ассимилируется, часть идёт на дыхание, а остаток идёт в биомассу, поэтому более корректно называть её вторичной ассимиляцией[2].

Схема распределения потоков вещества и энергии среди продуцентов и консументов (по Ю. Одуму, 1971)

Распределение энергии и вещества в экосистеме может быть представлено в виде системы уравнений. Если продукциюпродуцентов представить как P1, то продукция консументов первого порядка будет выглядеть следующим образом:

P2=P1-R2,

где R2 — затраты на дыхание, теплоотдача и неассимилированная энергия. Следующие консументы (второго порядка) переработают биомассу консументов первого порядка в соответствии с:

P3=P2-R3

и так далее, до консументов самого высшего порядка и редуцентов. Таким образом, чем больше в экосистеме потребителей (консументов), тем более полно перерабатывается энергия, первоначально зафиксированная продуцентами в пластических веществах[8]. В климаксных сообществах, где разнообразие для данного региона обычно максимально, такая схема переработки энергии позволяет сообществам устойчиво функционировать на протяжении длительного времени.

Энергетические соотношения в экосистемах (экологические эффективности) [править | править вики-текст]

Соотношения B/R (биомасса к дыханию) и P/R (продуктивность к дыханию)[8]. Первое соотношение (B/R) показывает необходимое количество энергии, затрачиваемой на поддержание существующей биомассы. В случае, если сообщество находится в критических условиях, данное соотношение уменьшается, так как необходимо затратить больше энергии на поддержание той же биомассы. Обычно в таких ситуациях биомасса также уменьшается. Второе соотношение, величина (P/R), характеризует эффективность затрачиваемой энергии (дыхания) на производство биомассы (продуктивность). Такое соотношение можно наблюдать в популяции мелких млекопитающих (к примеру, грызунов).

 

График изменения соотношения P/B в экосистемах (по А. К. Бродскому, 2002)

Соотношения A/I (ассимилированная энергия к поступившей) и P/A (продуктивность к ассимилированной энергии)[8]. Первое (A/I) называется эффективностью ассимиляции, а второе (P/A) — эффективностью роста тканей. Эффективность ассимиляции обычно варьирует от 1-4 % для растений и до 20-60 % для животных, для которых всё определяется качеством пищи: травоядные обычно усваивают не более 10-15 % поступившей энергии (но этот показатель может достигать и 80 % при поедании семян и плодов). Хищники, наоборот, могут ассимилировать до 60-90 %. Эффективность роста тканей в большой степени зависит также и от коэффициента P/R и изменяется в довольно больших пределах. Поэтому, как и P/R, эффективность роста тканей обычно достигает максимальных значений в популяциях малых организмов, в условиях, где не требуется больших затрат на поддержание гомеостаза.

Соотношение P/B (суммарная продуктивность сообщества к его биомассе) является важной характеристикой зрелости сообщества[8]. Коэффициент P/B безразмерен и может рассчитываться как продукция за определённый промежуток времени к средней за этот промежуток биомассе, или в конкретный момент времени как продуктивность в этот момент к существующей биомассе. Это соотношение обычно намного больше единицы в молодых сообществах, но с ростом числа видов и приближением к климаксному сообществу этот коэффициент стремится к единице.

Роль антропогенного воздействия [править | править вики-текст]

Хозяйственная деятельность человека изменяет величину чистой первичной продукции экосистем. В некоторых регионах, примером которых может служить долинаНила, ирригация дает значительное увеличение локальной чистой первичной продукции, но это скорее исключение из правила. Глобально на поверхности суши антропогенное воздействие сокращает этот показатель на 9,6% [44]. Кроме этого нужно отметить, что 23,8% чистой первичной продукции биосферы человечество потребляет на свои нужды [45]. Для достижения этого результата в 2000 году 34%) всей свободной ото льда поверхности суши были заняты под нужды сельского хозяйства, в том числе 12% под пашни и 22% под пастбища [46]. Это сокращает количество энергии, доступной для других биологических видов, негативно влияет на биоразнообразие, затрагивает водный и углеродный циклы планеты. Дальнейшее увеличение этой доли создает угрозу разрушения жизненно важных экосистем планеты [47].

Пространственные границы экосистемы (хорологический аспект)[править | править вики-текст]

 

Устье реки — пример экотона (фотография дельты Нила из космоса)

В природе, как правило, не существует чётких границ между различными экосистемами[15]. Всегда можно указать на ту или иную экосистему, но выделить дискретные границы, если они не представлены различными ландшафтными факторами (обрывы, реки, различные склоны холмов, выходы скальных пород и т. п.), не представляется возможным, ибо чаще всего существуют плавные переходы от одной экосистемы к другой[48]. Это обусловлено относительно плавным изменениемградиента факторов среды (влажность, температура, увлажнённость и прочее). Иногда переходы из одной экосистемы в другую могут фактически являться самостоятельной экосистемой. Обычно сообщества, образующиеся на стыке различных экосистем, называются экотонами[49]. Термин «экотон» введён Ф. Клементсом в 1905 году.

Экотоны [править | править вики-текст]

Экотоны играют существенную роль в поддержании биологического разнообразия экосистем за счёт так называемого краевого эффекта[50] — сочетания комплекса факторов среды различных экосистем, обуславливающее большее разнообразие условий среды, следовательно, лицензий и экологических ниш. Тем самым возможно существование видов как из одной, так и из другой экосистемы, а также специфичных для экотона видов (например растительность прибрежно-водных местообитаний).

 

Некоторые возможные варианты границ (экотоны) между экосистемами

В российской литературе краевой эффект иногда называют эффектом опушки[51].

Примерами экотонов могут служить прибрежные участки суши и водоемов (например,литораль), опушки, переходы из лесных экосистем в полевые, эстуарии[52]. Однако не всегда экотон является местом повышенного биоразнообразия видов. К примеру, эстуарии рек, впадающих в моря и океаны, наоборот, характеризуются пониженным биоразнообразием видов, так как средняя солёность дельт не позволяет существовать многим пресноводным и солоноводным (морским) видам.

Альтернативным представлением о континуальных переходах между экосистемами является представление о экоклинах (экологических рядах). Экоклин — постепенная смена биотопов, генетически и фенотипически приспособленных к конкретной среде обитания, при пространственном изменении какого-либо фактора среды (обычно климатического), а потому составляющих непрерывный ряд форм без заметных перерывов постепенности. Экоклин невозможно разделить на экотипы. Например, длина ушей лисиц и мн. др., их признаки изменяются с севера на юг настолько постепенно, что очень затруднительно выделить четкие морфологические группы, которые бы естественно объединялись в подвиды.

Временные границы экосистемы (хронологический аспект)[править | править вики-текст]

 

Смена сообщества в сосновом лесу после низового пожара (слева) и через два года после пожара (справа)

На одном и том же биотопе с течением времени существуют различные экосистемы. Смена одной экосистемы на другую может занимать как довольно длительные, так относительно короткие (несколько лет) промежутки времени. Длительность существования экосистем в таком случае определяется этапом сукцессии. Смена экосистем в биотопе может быть обусловлена и катастрофическими процессами, но в таком случае, существенно изменяется и сам биотоп, и такую смену не принято называть сукцессией (за некоторыми исключениями, когда катастрофа, например, пожар — естественный этап циклической сукцессии)[8].

Сукцессия [править | править вики-текст]

Основная статья: Сукцессия

Сукцессия — это последовательная, закономерная смена одних сообществ другими на определённом участке территории, обусловленная внутренними факторами развития экосистем[53][54]. Каждое предыдущее сообщество предопределяет условия существования следующего и собственного исчезновения[11]. Это связано с тем, что в экосистемах, которые являются переходными в сукцессионом ряду, происходит накопление вещества и энергии, которые они уже не в состоянии включить в круговорот, преобразование биотопа, изменение микроклимата и других факторов, и тем самым создаётся вещественно-энергетическая база, а также и условия среды, необходимые для формирования последующих сообществ. Однако, есть и другая модель, которая объясняет механизм сукцессии следующим образом[8]: виды каждого предыдущего сообщества вытесняются лишь последовательной конкуренцией, ингибируя и «сопротивляясь» внедрению последующих видов. Тем не менее, эта теория рассматривает лишь конкурентные отношения между видами, не описывая всю картину экосистемы в целом. Безусловно, такие процессы идут, но конкурентное вытеснение предыдущих видов возможно именно из-за преобразования ими биотопа. Таким образом, обе модели описывают разные аспекты процесса и верны одновременно.

 

Пример стадии автотрофной сукцессии — лес вырастает на местезалежи

Сукцессия бывает автотрофной (например, сукцессия после лесного пожара) и гетеротрофной (например, осушенноеболото)[2][8]. На ранних стадиях автотрофной сукцессионной последовательности соотношение P/R много больше единицы, так как обычно первичные сообщества обладают высокой продуктивностью, но структура экосистемы ещё не сформировалась полностью, и нет возможности утилизировать эту биомассу[8]. Последовательно, с усложнением сообществ, с усложнением структуры экосистемы, расходы на дыхание (R) растут, так как появляется всё больше гетеротрофов, ответственных за перераспределение вещественно-энергетических потоков, соотношение P/R стремится к единице и фактически является таковым у терминального сообщества (экосистемы)[2][8]. Гетеротрофная сукцессия обладает обратными характеристиками: в ней соотношение P/R на ранних этапах много меньше единицы (так как существует много органического вещества и нет необходимости в его синтезе, его можно сразу использовать на построение сообщества) и постепенно увеличивается по мере продвижения по сукцессионным стадиям.

 

Пример стадии гетеротрофной сукцессии — заболоченный луг

На ранних этапах сукцессии видовое разнообразие мало, но по мере развития разнообразие нарастает, изменяется видовой состав сообщества, начинают преобладать виды со сложными и продолжительными жизненными циклами, обычно появляются всё более крупные организмы, происходит развитие взаимовыгодных коопераций и симбиозов, усложняется трофическая структура экосистемы. Обычно предполагается, что терминальная стадия сукцессии обладает наибольшим видовым биоразнообразием. Это справедливо не всегда, но для климаксных сообществ тропических лесов это утверждение справедливо[55], а для сообществ умеренных широт пик разнообразия приходится на середину сукцессинного ряда или ближе к терминальной стадии[2][8]. На ранних стадиях сообщества состоят из видов с относительно высокой скоростью размножения и роста, но низкой способностью к индивидуальному выживанию (r-стратеги). В терминальной стадии воздействие естественного отбора благоприятствует видам с низкой скоростью роста, но большей способностью к выживанию (k-стратеги).

По мере продвижения по сукцессионному ряду происходит всё большее вовлечение биогенных элементов в круговорот в экосистемах, возможно относительное замыкание внутри экосистемы потоков таких биогенных элементов, как азот и кальций(одни из наиболее подвижных биогенов)[2][8]. Поэтому в терминальной стадии, когда большая часть биогенов вовлечена в круговорот, экосистемы более независимы от внешнего поступления данных элементов[2][8].

Для исследования процесса сукцессии применяют различные математические модели, в том числе стохастического характера[56]

Климаксное сообщество [править | править вики-текст]

 

Ельник (еловый лес) — типичный пример климаксного сообщества, развивающегося на некоторыхсуглинистых почвах на Северо-Западе России в подзоне южной тайги

Основная статья: Климакс (экология)

Понятие сукцессии тесно связано с понятием климаксного сообщества. Климаксное сообщество формируется в результате последовательной смены экосистем и представляет собой наиболее сбалансированное сообщество[57], максимально эффективно использующее вещественно-энергетические потоки, то есть поддерживающее максимально возможную биомассу на единицу поступающей в экосистему энергии.

 

Сосновый лес как климаксное сообщество, наоборот, развивается на песчаных и супесчаных почвах

Теоретически у каждого сукцессионного ряда существует климаксное сообщество (экосистема), которое является терминальной стадией развития (или несколько, так называемая концепция поликлимакса). Однако, в реальности сукцессинный ряд замыкается климаксом не всегда, может реализоваться субклимаксное сообщество (или названное Ф. Клементсом — плагиклимакс), которое представляет собой сообщество, предшествующее климаксному, достаточно развитое структурно и функционально[8]. Такая ситуация может возникать в силу естественных причин — условий среды или вследствие деятельности человека (в таком случае его называют дисклимакс[58]).

Ранги экосистем[править | править вики-текст]

Вопрос ранжирования экосистем достаточно сложен. Выделение минимальных экосистем (биогеоценозов) и экосистемы наивысшего ранга — биосферы не вызывает сомнений[8]. Промежуточные же выделения довольно сложны, так как сложности хорологического аспекта не всегда однозначно позволяют определить границы экосистем. В геоэкологии (и ландшафтоведении) существует следующее ранжирование: фация — урочище (экосистема) —ландшафт — географический район — географическая область — биом — биосфера[59]. В экологии существует сходное ранжирование[8], однако, обычно считается, что корректно выделение лишь одной промежуточной экосистемы — биома.

Биомы [править | править вики-текст]

Основная статья: Биом

Биом — крупное системно-географическое (экосистемное) подразделение в пределах природно-климатической зоны (Реймерс Н. Ф.). Согласно Р. Х. Уиттекеру — группа экосистем данного континента, которые имеют сходную структуру или физиономию растительности и общий характер условий среды. Это определение несколько некорректно, так как существует привязка к конкретному континенту, а некоторые биомы присутствуют на разных континентах, например, тундровый биомили степной.

На данный момент наиболее общепринятое определение звучит так: «Биом — совокупность экосистем со сходным типом растительности, расположенных в одной природно-климатической зоне» (Акимова Т. А., Хаскин В. В.[60]).

Общим в этих определениях является то, что в любом случае биомом называется совокупность экосистем одной природно-климатической зоны.

 

 

32 Ноосфе́ра (греч. νόος — разум и σφαῖρα — шар) — сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческаядеятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»)[1].

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного» [1].

Понятие «ноосфера» было предложено профессором математики Сорбонны Эдуардом Леруа (англ.)русск. (1870—1954), который трактовал её как «мыслящую» оболочку, формирующуюся человеческим сознанием. Э. Леруа подчёркивал, что пришёл к этой идее совместно со своим другом — крупнейшим геологом и палеонтологом-эволюционистом и католическим философом Пьером Тейяром де Шарденом. При этом Леруа и Шарден основывались на лекциях по геохимии, которые в 1922/1923 годах читал в Сорбонне Владимир Иванович Вернадский (1863—1945).

Наиболее полное воплощение теория Леруа нашла в разработке Тейяра де Шардена, который разделял не только идею абиогенеза (оживления материи), но и идею, что конечным пунктом развития ноосферы будет слияние с Богом. Развитие ноосферного учения связано в первую очередь с именем Вернадского.

В основе теории ноосферы Леруа лежат представления Плотина (205—270) об эманации Единого (непознаваемой Первосущности, отождествляемой с Благом) в Ум и мировую Душу, с последующей трансформацией последних снова в Единое. Согласно Плотину, сначала Единое выделяет из себя мировой Ум (нус), заключающий в себе мир идей, затем Ум производит из себя мировую Душу, которая дробится на отдельные души и творит чувственный мир. Материя возникает как низшая ступень эманации. Достигнув определенной ступени развития, существа чувственного мира начинают осознавать собственную неполноту и стремиться к приобщению, а затем и слиянию с Единым.

Эволюционная модель Леруа и Тейяра де Шардена повторяет основные положения неоплатонизма. Разумеется, возникновение Вселенной, появление и развитие жизни на Земле описывается в терминах современной науки, но принципиальная схема концепции соответствует принципам неоплатоников. Человек у Плотинастремится выйти за пределы Души в сферу Разума, чтобы затем, через экстаз, приобщиться к Единому. Согласно Тейяру де Шардену, человек также стремится перейти в сферу разума и раствориться в Боге.

Идеи Плотина были восприняты Леруа в бергсонианском духе. Влияние Анри Бергсона (1859—1941) на создание теории ноосферы заключалось главным образом в выдвинутом им положении о творческой эволюции («L'évolution créatrice», 1907. Русский перевод: «Творческая эволюция», 1914). Подлинная и первоначальная реальность, по Бергсону, — жизнь как метафизически-космический процесс, творческая эволюция; структура её — длительность, постигаемая только посредствоминтуиции, различные аспекты длительности — материя, сознание, память, дух. Универсум живёт, растёт в процессе творческого сознания и свободно развивается в соответствии с внутренне присущим ему стремлением к жизни — «жизненным порывом» (l'élan vital).

Влияние Бергсона прослеживается и у Тейяра де Шардена. В частности, в «Феномене человека» он несколько раз обращается к бергсоновским категориям порыва (l'élan) и длительности (durée).

33 Эврибионты (от греч. ευρί — «широкий» и греч. βίον — «живущий») — организмы, способные существовать в широком диапазоне природных условий окружающей среды и выдерживать их значительные изменения.Имеют широкие пределы толерантности. Типичные представители: колюшка

Так, например, животные, обитающие в зонах с континентальным климатом способны переносить значительные сезонные колебания температуры, влажности и других природных факторов. Жители литоральных областей регулярно подвергаются колебаниям температуры и солёности окружающей воды, а также осушению.

Эврибионтные организмы, как правило, имеют морфофизиологические механизмы, позволяющие им поддерживать постоянство своей внутренней среды даже при резких колебаниях условий окружающей среды.

34 Синэколо́гия — раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов. Часто синэкологию рассматривают как науку о жизни биоценозов, то есть многовидовых сообществ животных, растений и микроорганизмов.

В настоящее время является одним из трёх главных разделов общей экологии (наряду с аутэкологией и демэкологией).

Изначально термин использовался преимущественно в ботанике. В конце XIX — начале XX века на страницах Энциклопедического словаря Брокгауза и Ефрона было дано следующее определение термина:

Синэкология или учение о растительных формациях, распадается на следующие отделы: I. Физиономическая С. имеет задачей описание растительных формаций с точки зрения их состава и «физиономии» («жизненных форм»). II. Географическая C. изучает географическое распределение формаций по областям, по горным поясам и по геологическим системам (формациям и проч.), представляющим собой субстрат для растительности. III. Экологическая С. изучает условия жизни данного местообитания; отдельные экологические группы, входящие в состав данной формации; происхождение формаций, условия поддержания их в равновесии и изменения, претерпеваемые формациями. IV. Историческая С. исследует флористические элементы отдельных формаций и историю их иммиграции [1].

35 Эро́зия (от лат. erosio — разъедание) — разрушение горных пород и почв поверхностными водными потоками[1] и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Эрозия почвы [2] — разрушение почвы.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экранизация (ледниковая эрозия), гравитационные процессы, солюбилизацияи т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменениемрельефа.

По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Ветровая эрозия[править | править вики-текст]

 

Валун из гнейса, подверженный ветровой эрозии (горы Наньшань,Китай)

Это разрушающее действие ветра: развевание песков, лесов, вспаханных почв; возникновение пыльных бурь; шлифовка скал, камней, строений и механизмов твердыми частицами, переносимыми силой ветра. Ветровая эрозия подразделяется на два типа:

Повседневная

Пыльные бури

Начало пыльной бури связано с определенными скоростями ветра, однако из-за того, что летящие частицы вызывают цепную реакцию отрыва новых частиц, окончание её происходит при скоростях существенно меньших.

Наиболее сильные бури имели место в США в 1930-е годы («Пыльный котёл») и в СССР в 1960-е годы, после освоения целины. Чаще всего пыльные бури связаны с нерациональной хозяйственной деятельностью человека, а именно — массированной распашкой земель без проведения почвозащитных мероприятий.

Выделяют и специфические дефляционные формы рельефа, так называемые «котловины выдувания»: отрицательные формы, вытянутые по направлению господствующих ветров.

Водная эрозия[править | править вики-текст]

 

Промоины на пшеничном поле,США

Капельная эрозия [править | править вики-текст]

Разрушение почвы ударами капель дождя. Структурные элементы (комочки) почвы разрушаются под действием кинетической энергии капель дождя и разбрасываются в стороны. На склонах перемещение вниз происходит на большее расстояние. Падая, частички почвы попадают на плёнку воды, что способствует их дальнейшему перемещению. Этот вид водной эрозии приобретает особое значение во влажных тропиках и субтропиках[3]

Плоскостная эрозия [править | править вики-текст]

Под плоскостной (поверхностной) эрозией понимают равномерный смыв материала со склонов, приводящий к их выполаживанию. С некоторой долей абстракции представляют, что этот процесс осуществляется сплошным движущимся слоем воды, однако в действительности его производит сеть мелких временных водных потоков.

Поверхностная эрозия приводит к образованию смытых и намытых почв, а в более крупных масштабах — делювиальных отложений.

Линейная эрозия [править | править вики-текст]

В отличие от поверхностной, линейная эрозия происходит на небольших участках поверхности и приводит к расчленению земной поверхности и образованию различных эрозионных форм (промоин, оврагов, балок, долин). Сюда же относят и речную эрозию, производимую постоянными потоками воды.

Смытый материал отлагается обычно в виде конусов выноса и формирует пролювиальные отложения.

Виды линейной эрозии [править | править вики-текст]

 

Пример совмещённых боковой и глубинной эрозий. Берег Сухоны.

Глубинная (донная) — разрушение дна русла водотока. Донная эрозия направлена от устья вверх по течению и происходит до достижения дном уровня базиса эрозии.

Боковая — разрушение берегов.

В каждом постоянном и временном водотоке (реке, овраге) всегда можно обнаружить обе формы эрозии, но на первых этапах развития преобладает глубинная, а в последующие этапы — боковая.

36 Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных организмов (большинство растений и фотосинтезирующие бактерии), а в жизни гетеротрофных организмов (грибы, животные, значительная частьмикроорганизмов) свет не оказывает заметного влияния на жизнедеятельность.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

Классификации экологических факторов[править | править вики-текст]

По характеру воздействия [править | править вики-текст]

Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ

Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению [править | править вики-текст]

Абиотические — факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

Биотические — связанные с деятельностью живых организмов:

фитогенные — влияние растений

микогенные — влияние грибов

зоогенные — влияние животных

микробиогенные — влияние микроорганизмов

Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные — связанные с отношениями людей и жизнью в обществе

По расходованию [править | править вики-текст]

Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности [править | править вики-текст]

Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы

Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

Действие экологических факторов на организм[править | править вики-текст]

Факторы среды воздействуют на организм не по отдельности, а в комплексе, соответственно, любая реакция организма является многофакторно обусловленной. При этом интегральное влияние факторов не равно сумме влияний отдельных факторов, так как между ними происходят различного рода взаимодействия, которые можно подразделить на четыре основных типа:

Монодоминантность — один из факторов подавляет действие остальных и его величина имеет определяющее значение для организма. Так, полное отсутствие, либо нахождение в почве элементов минерального питания в резком недостатке или избытке препятствуют нормальному усвоению растениями прочих элементов.

Синергизм — взаимное усиление нескольких факторов, обусловленное положительной обратной связью. Например, влажность почвы, содержание в ней нитратови освещённость при улучшении обеспечения любым из них повышают эффект воздействия двух других.

Антагонизм — взаимное гашение нескольких факторов, обусловленное обратной отрицательной связью: увеличение популяции саранчи способствует уменьшению пищевых ресурсов и её популяция сокращается.

Провокационность — сочетание положительных и отрицательных для организма воздействий, при этом влияние вторых усилено влиянием первых. Так, чем раньше наступает оттепель, тем сильнее растения страдают от последующих заморозков.

Влияние факторов также зависит от природы и текущего состояния организма, поэтому они оказывают неодинаковое воздействие как на разные виды, так и на один организм на разных этапах онтогенеза: низкая влажность губительна для гидрофитов, но безвредна для ксерофитов; низкие температуры без вреда переносятся взрослыми хвойными умеренного пояса, но опасны для молодых растений.

Факторы могут частично замещать друг друга: при ослаблении освещённости интенсивность фотосинтеза не изменится, если увеличить концентрацию углекислого газав воздухе, что обычно и происходит в теплицах.

Результат воздействия факторов зависит от продолжительности и повторяемости действия их экстремальных значений на протяжении всей жизни организма и его потомков: непродолжительные воздействия могут и не иметь никаких последствий, тогда как продолжительные через механизм естественного отбора ведут к качественным изменениям.

37 Тенелюби́вые расте́ния, сциофи́ты (от др.-греч. σκιά — тень + φυτόν — растение), гелиофо́бы (от др.-греч. Ἥλιος — солнце + φόβος — страх, боязнь) — растения, обитающие исключительно в затемнённых условиях, предпочитающие рассеянный свет. При прямом солнечном освещении у тенелюбивых растений проявляются признаки угнетённости развития и возможны солнечные ожоги. Группа, противоположная по своим качествам светолюбивым растениям (гелиофитам).

Наиболее характерными представителями являются водоросли, обитающие в толще воды, мхи, лишайники, плауны, папоротники в лесах.

38 Популя́ция (от лат. populatio — население) — это совокупность организмов одного вида, длительное время обитающих на одной территории (занимающих определённый ареал). Этот термин используется в различных разделах биологии, экологии, демографии, медицине и психометрике. Популяция — совокупность особей одного вида, обладающая общим генофондом, способная к более-менее устойчивому самовоспроизводству (как половому, посредством панмиксии в идеальном случае, так и бесполому), относительно обособленная (географически или репродуктивно) от других групп, с представителями которых (при половой репродукции) потенциально возможен генетический обмен. С точки зрения популяционной генетики, популяция — это группа особей, в пределах которой вероятность скрещивания во много раз превосходит вероятность скрещивания с представителями других подобных групп. Обычно говорят о популяциях как о группах в составе вида или подвида.

Термин введён Вильгельм Иогансеном в 1903 году, однако уже Чарлз Дарвин объяснял эволюцию видов изменчивостью и конкуренцией групп особей[1] (например, в 12-й главе «Происхождения видов» он писал: «В большинстве случаев именно у всех тех организмов, которые обычно соединяются для каждого рождения или свободного скрещивания время от времени, особи одного вида, живущие в одном ареале, останутся почти однообразными благодаря скрещиванию; вследствие этого многие особи должны претерпевать одновременно модификацию, и величина модификации на каждой стадии не определяется происхождением от единственного родителя»[2]).

В современных эволюционных теориях (например, в Синтетической теории эволюции) популяция считается элементарной единицей микроэволюционного процесса.

Изучение популяций, их взаимодействия и динамики является одной из основных задач экологии. В частности, одной из простейших моделей динамики популяций является логистическое уравнение.

Популяции свойственна определенная организация. Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой — под влиянием абиотических факторов среды и популяций других видов. Структура популяций имеет, следовательно, приспособительный характер.

Адаптивные возможности вида в целом как системы популяций значительно шире приспособительных особенностей каждой конкретной особи.

Популяционная структура вида

Пространство или ареал, занимаемое популяцией, может быть различным как для разных видов, так и в пределах одного вида. Величина ареала популяции определяется в значительной мере подвижностью особей или радиусом индивидуальной активности. Если радиус индивидуальной активности невелик, величина популяционного ареала обычно также невелика. В зависимости от размеров занимаемой территории можно выделить три типа популяций: элементарные, экологические и географические (рис. 1).

 

Различают половую, возрастную, генетическую, пространственную и экологическую структуру популяций.

Половая структура популяции представляет собой соотношение в ней особей разного пола.

Возрастная структура популяции — соотношение в составе популяции особей разного возраста, представляющих один или разные приплоды одного или нескольких поколений.

Генетическая структура популяции определяется изменчивостью и разнообразием генотипов, частотами вариаций отдельных генов — аллелей, а также разделением популяции на группы генетически близких особей, между которыми при скрещивании происходит постоянный обмен аллелями.

Пространственная структура популяции - характер размещения и распределения отдельных членов популяции и их группировок в ареале. Пространственная структура популяций заметно различается у оседлых и кочующих или мигрирующих животных.

Экологическая структура популяции представляет собой разделение всякой популяции на группы особей, по-разному взаимодействующие с факторами среды.

Каждый вид, занимая определенную территорию (ареал), представлен на ней системой популяций. Чем сложнее расчленена территория, занимаемая видом, тем больше возможностей для обособления отдельных популяций. Однако не в меньшей степени популяционную структуру вида определяют его биологические особенности, — такие, как подвижность составляющих его особей, степень их привязанности к территории, способность преодолевать естественные преграды.

Половая структура популяций

Генетический механизм определения пола обеспечивает расщепление потомства по полу в отношении 1:1, так называемое соотношение полов. Но из этого не следует, что такое же соотношение характерно для популяции в целом. Сцепленные с полом признаки часто определяют значительные различия в физиологии, экологии и поведении самок и самцов. В силу разной жизнеспособности мужского и женского организмов это первичное соотношение нередко отличается от вторичного и особенно от третичного — характерного для взрослых особей. Так, у человека вторичное соотношение полов составляет 100 девочек на 106 мальчиков, к 16-18 годам это соотношение из-за повышенной мужской смертности выравнивается и к 50 годам составляет 85 мужчин на 100 женщин, а к 80 годам — 50 мужчин на 100 женщин.

Соотношение полов в популяции устанавливается не только по генетическим законам, но и в определенной мере под влиянием среды обитания.

Возрастная структура популяций

Рождаемость и смертность, динамика численности напрямую связаны с возрастной структурой популяции. Популяция состоит из разных по возрасту и полу особей. Для каждого вида, а иногда и для каждой популяции внутри вида характерны свои соотношения возрастных групп. По отношению к популяции обычно выделяют три экологических возраста: предрепродуктивный, репродуктивный и пострепродуктивный.

С возрастом требования особи к среде и устойчивость к отдельным ее факторам закономерно и весьма существенно изменяются. На разных стадиях онтогенеза могут происходить смена сред обитания, изменение типа питания, характера передвижения, обшей активности организмов.

Возрастные различия в популяции существенно усиливают ее экологическую неоднородность и, следовательно, сопротивляемость среде. Повышается вероятность того, что при сильных отклонениях условий от нормы в популяции сохранится хотя бы часть жизнеспособных особей, и она сможет продолжить свое существование.

Возрастная структура популяций имеет приспособительный характер. Она формируется на основе биологических свойств вида, но всегда отражает также силу воздействия факторов окружающей среды.

39 Методы очистки сточных вод

На данном сервисе вы найдете много полезной информации об очистке сточных вод. Специалисты промышленных предприятий, проектировщики, научные сотрудники, студенты многие другие найдут здесь ответы на свои вопросы. Если на сайте не представлена интересующая Вас информация Вы можете задать свой вопрос на форуме. Мы или другие пользователи в кратчайшие сроки постараются помочь Вам в вашей профессиональной деятельности, ответить на вопросы или дать совет. Пользуйтесь с удовольствием!!!

Очистка сточных вод  это обработка сточных вод с целью разрушения или удаления из них загрязняющих веществ. В ходе процесса очистки образуется очищенная вода и отход, содержащий загрязняющие вещества в высоких концентрациях. Как правило, это уже твердый отход пригодный для захоронения или утилизации.

Методы очистки сточных вод можно разделить на механические методы, химические методы, физико-химические методы и биологические методы. Чаще всего используются комбинации данных методов. Применение того или иного метода очистки сточных вод в каждом конкретном случае определяется характером загрязнений и требованиями к очищенной воде.




Дата добавления: 2015-01-07; просмотров: 82 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.061 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав