Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Факторы разрушения озона

Читайте также:
  1. II. Факторы эпидемического процесса.
  2. V2: Экологические факторы.
  3. Абиотические и биотические факторы атмосферы.
  4. Абиотические и биотические факторы.
  5. Абиотические факторы
  6. Абиотические факторы
  7. Абиотические факторы водной среды.
  8. Абиотические факторы. Свет и его значение в жизнедеятельности организмов.
  9. Аварии на радиационно-опасных объектах (РОО), поражающие факторы , радиационное воздействие на человека и природу, радиационная зашита и профилактика.
  10. АНЕМИИ ВСЛЕДСТВИЕ ПОВЫШЕННОГО КРОВОРАЗРУШЕНИЯ - ГЕМОЛИТИЧЕСКИЕ

Нарастание концентрации хлорфторуглеродов (фреонов), диоксидов азота, метана и других углеводородов, поступающих в дополнение к естественным составляющим атмосферы из техногенных источников, при сжигании углеводородного сырья на транспорте способно уменьшить концентрацию озона.

Главную опасность для атмосферного озона составляет группа химических веществ, объединенных термином «хлорфторуглероды» (ХФУ), называемых также фреонами, которые впервые были получены в 1928 г. В течение полувека эти вещества считались чудо-веще­ст­ва­ми. Они нетоксичны, инертны, чрезвычайно стабильны, не горят, не растворяются в воде, удобны в производстве и хранении. И поэтому сфера применения ХФУ динамично расширялась. В массовых масштабах их начали использовать в качестве хладагентов при изготовлении холодильников. Затем они стали применяться в системах кондиционирования воздуха, а с началом всемирного аэрозольного бума получили самое широкое распространение. Фреоны оказались очень эффективны при промывке деталей в электронной промышленности, а также нашли широкое применение в производстве пенополиуретанов. Пик их мирового производства пришелся на конец 80-х гг. и составил около 1,2–1,4 млн. т в год, из которых на долю США приходилось около 35 %.

Предполагают, что попадая в верхние слои атмосферы, эти инертные у поверхности Земли вещества становятся активными. Под воздействием ультрафиолетового излучения химические связи в их молекулах нарушаются. В результате выделяется хлор, который при столкновении с молекулой озона превращает его в кислород. Хлор же, соединившись временно с кислородом, опять оказывается свободным и способным к новым химическим реакциям. Его активности и агрессивности хватает на то, чтобы разрушить десятки тысяч молекул озона.

Суммарное производство фреонов, используемых при производстве пенопластов, в холодильной, парфюмерной промышленности, бытовых устройствах (аэрозольные баллончики) в 1988 г. достигло 1 млн. т.
Эти высокоинертные вещества абсолютно безвредны в приземных слоях атмосферы. При медленной диффузии в стратосферу они достигают области распространения фотонов высоких энергий и при фотохимических превращениях способны разлагаться с выделением атомарного хлора. Один атом Сl способен разрушить десятки и сотни молекул O3. Хлор интенсивно реагирует с озоном, действуя как катализатор:

О3 + Сl = Сl + О2.

СlO + O = Сl + O2.

O3 + О = 2O2.

Аналогично действует и оксид азота NО, техногенное поступление которого в атмосферу связано с реакциями горения углеводородного топлива. Главными поставщиками NО в атмосферу являются двигатели ракет, самолетов и автомобилей. С учетом сложившегося в настоящее время газового состава стратосферы в порядке оценки можно говорить, что около 70 % озона разрушается по азотному циклу, 17 – по кислородному, 10 – по водородному, около 2 % по хлорному и около 1–2 % поступает в тропосферу. Вклад транспорта в разрушение озоносферы чрезвычайно велик в связи с выбросом в атмосферу оксидов азота.

Активную роль в образовании и разрушении озона играют тяжелые металлы (медь, железо, марганец). Поэтому общий баланс озона в стратосфере регулируется сложным комплексом процессов, в которых значительными являются около 100 химических и фотохимических реакций.

В этом балансе азот, хлор, кислород, водород и другие компоненты участвуют как бы в виде катализаторов, не меняя своего «содержания», поэтому процессы, приводящие к их накоплению в стратосфере или удалению из нее, существенно сказываются на содержании озона.
В связи с этим попадание в верхние слои атмосферы даже относительно небольших количеств таких веществ может устойчиво и долгосрочно влиять на установившийся баланс, связанный с образованием и разрушением озона.

Метан CH4, как и оксид азота, относится к естественным компонентам атмосферы, также способен реагировать с озоном. Его техногенное поступление в результате принудительной вентиляции шахт, потерь при добыче нефти и газа, заболачивании низменных ландшафтов принимает все большие масштабы. Поэтому зафиксированное уменьшение концентрации озона не без оснований связывают с антропогенной деятельностью – техногенезом.

Основные запасы планетарного метана сосредоточены в форме твердых газогидратов, локализованных в прибрежных зонах полярных акваторий. Переход твердых гидратов в газ минует жидкую фазу. Характерно, что с 1972 до 1985 г. с помощью спутникового слежения (Nimbus-7) выявлено более 200 высоконапорных метановых струй на высотах до 22 км,
т. е. в озоноэффективных областях атмосферы. Метан способствует не только разрушению озона, но и повышению температуры приземного воздуха («парниковый эффект»). В свою очередь, такое потепление может вызвать «взрыв» газогидратных панцирей и рост концентрации метана в атмосфере.

Огромное влияние на снижение содержания озона оказывают запуски ракет и кораблей многоразового использования типа «Шаттл» и «Энергия». Один старт «Шаттла» – это потеря 10 млн. т озона. Метеорологи и геофизики давно обращают внимание космических корпораций на этот факт. Но слишком заманчиво освоение космоса с его невиданными типами энергии, а причины снижения концентрации озона в озоносфере до сих пор до конца не обоснованы. Кроме того, предполагается, что первый массивный удар по озоновому слою был нанесен высотными ядерными взрывами 1958–1962 гг. Хотя и по другим политическим причинам, но в настоящее время от продолжения таких ядерных взрывов благоразумно воздержались. По оценкам специалистов, после «залечивания» озоновой дыры в результате гелиогенерации озона в течение
22-летнего солнечного цикла, в период спокойного Солнца все равно будет наблюдаться снижение концентрации озона. Более 60 % техногенного вклада в это снижение дают запуски ракет, и это может привести к расширению озонной дыры до средних широт.

Есть еще одна гипотеза причин увеличения озоновой дыры. Она могла образоваться за счет «срыва» кометой Галлея соответствующего слоя атмосферы на высотах 14–40 км. Образование ее началось за несколько лет до прилета кометы в центральные районы Солнечной системы. И вот уже несколько лет как комета уходит снова в космические просторы, а вслед за этим и исчезает «озоновая дыра».




Дата добавления: 2015-01-07; просмотров: 23 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав