Читайте также:
|
|
Конгрольна робота складається з двох частин: теоретичних питань та задач Теоретичні питання виконуються студентами за варіантами, які обираються зг останньою цифрою залікової книжки. Кожен студент повинен виконати три задачі, причому перші дві (Каїта №2) для кожною варіанта обираються згідно першої літери прізвища (як вказано в табл.1), а третя задача (№3) виконується за умовою А, а вибір варіанта відбувається за номером у журналі.
![]() |
![]() |
![]() |
![]() |
![]() |
Умова А (до задачі № 3)
1. Виявити наявність та напрямок кореляційного зв'язку між факторною та
результативною ознакою для вибірки, що задана в табл. А. - Побудувати модель
аналітичного групування (МАГ) з поділом факторної ознаки Хна 4 рівні інтервали.
Для кожного інтервалу обчислювати групові середні для X та У, вважаючи ліві межі
інтервалів замкненими, а праві відкритими. Зробити висновки про наявність та
напрямок кореляційного зв'язку.
2. Оцінити тісноту зв'язку в МАГ (згідно завдання і) та перевірити його
істотність для рівня а=0,05. Обчислити загальну, міжгрупову дисперсії та
кореляційне відношення та зробити висновки.
3. Для характеристики кореляційного зв'язку між факторною та
результативною ознаками побудувати поле кореляції та теоретичну модель лінійної
регресії (МЛР). Визначити параметри a та b лінійного рівняння регресії та
побудувати його графік. Розрахувати індекс кореляції. Зробити висновки.
Оцінити тісноту кореляційного зв'язку в МЛР (згідно до завдання 3)
шляхом обчислення коефіцієнта детермінації та лінійного коефіцієнта кореляції.
Перевірити істотність зв'язку для а~0,05 за критерієм Фішера. Зробити висновки.
![]() |
Дата добавления: 2015-01-12; просмотров: 140 | Поможем написать вашу работу | Нарушение авторских прав |