Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Повторение опытов

Читайте также:
  1. I. Повторение
  2. Б. Злоупотребления при проведении опытов на людях
  3. Избыточность и повторение в масс медиа
  4. ИННОВАЦИЯ И ПОВТОРЕНИЕ.
  5. Итак, перед вами описание опытов.
  6. Итак, перед вами описание опытов.
  7. Итоговое повторение
  8. Итоговое повторение
  9. Повторение изученного.
  10. Повторение имени Бога

Несколько опытов называются независимыми, если вероятность одного или иного из исходов каждого их опытов не зависит от того какие исходы имели другие опыты.

Теорема.Если производится n независимых опытов в каждом из которых событие А появляется с одинаковой вероятностью р, причем то тогда вероятность того, что событие А появится ровно m раз определяется по формуле.

Формула Бернули

формула Бернули применяется в тех случаях, когда число опытов невелико, а вероятности появления достаточно велики.

Если число испытаний n стремится к 0, а вероятность появления события А в каждом из опытов р стремится к 0, то для определения вероятности появления события А ровно m раз применяютформулу Пуассона

a=n*p

Если число опытов достаточно велико но не бесконечно, а вероятность появления события А в каждом опыте не стремится к 0, применяют локальную и интегральную теоремы Лапласа

Локальная теорема Лапласа.Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р причем 1>р>0, то это событие наступает ровно m раз приблизительно равна

Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р, причем 1>р>0, то событие А наступит не менее m1 раз и не более m2 раза приблизительно равно

 


Дата добавления: 2015-01-12; просмотров: 4 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.032 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав