Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Корреляционный момент и коэффициент корреляции.

Читайте также:
  1. Andante cantabile С. Рахманинов. Музыкальный момент op. 16, № 3
  2. I. Организационный момент
  3. I. Организационный момент
  4. I. Организационный момент.
  5. I. ОРГАНІЗАЦІЙНИЙ МОМЕНТ
  6. I.Оргмомент.
  7. Inventory turnover ratio / Коэффициент оборачиваемости запасов
  8. Lt;variant>коэффициент финансовой зависимости
  9. V2: Корреляционный анализ
  10. Working capital turnover ratio / Коэффициент оборачиваемости оборотного капитала
Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

Корреляционным моментомсистемы двух случайных величин называется второй смешанный центральный момент:Kxy = μ1,1 = M((X – M(X))(Y – M(Y))).Для дискретных случайных величин

для непрерывных случайных величин Безразмерной характеристикой коррелированности двух случайных величин является коэффи-циент корреляции . Корреляционный момент описывает связь между составляющими двумерной случайной вели-чины. Действительно, убедимся, что для независимых Х и Y Kxy = 0. В этом случае f(x,y) = =f1(x)f2(y), тогда Итак, две независимые случайные величины являются и некоррелированными. Однако понятия коррелированности и зависимости не эквивалентны, а именно, величины могут быть зависимы-ми, но при этом некоррелированными. Дело в том, что коэффициент корреляции характеризует не всякую зависимость, а только линейную. В частности, если Y = aX + b, то rxy = ±1. Найдем возможные значения коэффициента корреляции.Теорема 9.1. Доказательство. Докажем сначала, что Действительно, если рассмотреть случай-ную величину и найти ее дисперсию, то получим: . Так как дисперсия всегда неотрицательна, то откуда Отсюда что и требовалось доказать.

20. Случайные функции. Понятие случайной функции. Математическое ожидание случайной функции.Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргу-мента Х:Y = φ(X). Выясним, как найти закон распределения функции по известному закону распределения аргумента.1) Пусть аргумент Х – дискретная случайная величина, причем различным значениям Х соот-ветствуют различные значения Y. Тогда вероятности соответствующих значений Х и Y равны.2) Если разным значениям Х могут соответствовать одинаковые значения Y, то вероятности значений аргумента, при которых функция принимает одно и то же значение, складываются.

3) Если Х – непрерывная случайная величина, Y = φ(X), φ(x) – монотонная и дифференцируемая функция, а ψ(у) – функция, обратная к φ(х), то плотность распределения g(y) случайно функции Y равна:

Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь



Дата добавления: 2015-01-12; просмотров: 5 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2022 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав