Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Условные законы распределения. Математическое ожидание и дисперсии я случайных величин. Условное математическое ожидание.

Читайте также:
  1. B.Подзаконы
  2. D. Безусловные местные рефлексы.
  3. E) законы, указы, имеющие силу закона, указы, распоряжения.
  4. E) законы, указы, имеющий силу закона, указы, распоряжения.
  5. E) экономические законы и развитие экономических систем
  6. II. Нормативно-правовые акты делятся на: законы и подзаконные акты.
  7. O законы;
  8. The Laws of Demand and Supply (Законы спроса и предложения)
  9. V2: Системы случайных величин
  10. V2: Случайные величины и их законы распределения

дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М(Х) = х1р1 + х2р2 + … + хпрп . (7.1)

Если число возможных значений случайной величины бесконечно, то

, если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Дисперсией (рассеянием)случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания: D(X) = M (X – M(X))²

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема. D(X) = M(X ²) – M ²(X).

Доказательство.

Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D(X) = M(X – M(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(XM(X) + M²(X) =

= M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X),

что и требовалось доказать.вв


Дата добавления: 2015-01-12; просмотров: 15 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2019 год. (0.029 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав