Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Управленческая информация - это совокупность сведений о состоянии и процессах, протекающих внутри и вовне организации.

Читайте также:
  1. E) твердом состоянии
  2. FCC информация (U.S.A.)
  3. I. Общая информация
  4. I. Общая информация
  5. I. Эта информация может оказаться для Вас бесценной.
  6. I. Эта информация может оказаться для Вас очень полезной.
  7. II. Вещества, участвующие во внутривидовых взаимодействиях
  8. III. Информация в диагностике
  9. IV. 5. Техника внутривенной инъекции.
  10. IV.4. Техника внутримышечной инъекции.

Управленческую информацию классифицируют по следующим признакам:

по содержанию - кадровая, техническая, финансово-экономическая, правовая, общественно-политическая, природоохранная и др.;

по назначению - для руководителей и исполнителей, для одноразовых действий и повседневного руководства, для внешнего или внутреннего пользования;

по степени конфиденциальности - для общего пользования, служебного пользования, секретная, сверхсекретная особой важности, подлежащая разглашению через установленный срок;

по степени достоверности - достоверная и проверенная, подлежащая дополнительной проверке, сомнительная, базирующаяся на домыслах и слухах;

по степени готовности для пользования ею - первичная несистематизированная и необработанная, промежуточная, прошедшая предварительную обработку, и конечная, готовая для анализа и принятия решения по ней;

по объему, источникам, срокам сбора и доставки, способам получения и распространения и другим признакам.

Источниками управленческой информации могут быть вышестоящее руководство, подчиненные им руководители и органы управления, средства массовой информации, информационные системы, периодическая печать, образцы техники, техническая документация, справочники, бизнес - документы, фотоснимки, микрофильмы, показания приборов и др.

Значительную часть времени менеджеры уделяют работе с такими источниками информации, как: бухгалтерские отчеты, акты о ревизиях и проверках, итоги аудита, финансовые документы, сведения о движении кадров, поставках, объему производства и сбыту.

Особо следует остановиться на устной информации. Для получения оперативной информации руководители часто применяют практику устных докладов. Восприятие устной информации здесь носит двусторонний характер.

Восприятие человеком информации складывается из двух взаимосвязанных процессов - отбора и систематизации полученных сведений.

В процессе отбора информации происходит "отсеивание" не требующей внимания и ненужной информации. Здесь важным является опыт человека, знание проблем, по которым поступила информация, его психологическое состояние, настроение, здоровье, отношение к происходящему и др. По этим причинам может быть и потеря информации.

Основные виды информации по ее форме представления, способам ее кодирования и хранения, что имеет наибольшее значение для информатики, это:

· графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей на бумаге, холсте, мраморе и др. материалах, изображающих картины реального мира;

· звуковая — мир вокруг нас полон звуков и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г. ее разновидностью является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение ее аналогично графической информации;

· текстовая — способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

· числовая — количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для ее отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

· видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др.

Для передачи информации на большие расстояния первоначально использовались кодированные световые сигналы, с изобретением электричества — передача закодированного определенным образом сигнала по проводам, позднее — с использованием радиоволн.

Создателем общей теории информации и основоположником цифровой связи считается Клод Шеннон (Claude Shannon). Всемирную известность ему принес фундаментальный труд 1948 года — «Математическая теория связи» (A Mathematical Theory of Communication), в котором впервые обосновывается возможность применения двоичного кода для передачи информации.

С появлением компьютеров (или, как их вначале называли в нашей стране, ЭВМ — электронные вычислительные машины) вначале появилось средство для обработки числовой информации. Однако в дальнейшем, особенно после широкого распространения персональных компьютеров (ПК), компьютеры стали использоваться для хранения, обработки, передачи и поиска текстовой, числовой, изобразительной, звуковой и видеоинформации. С момента появления первых персональных компьютеров — ПК (80-е годы 20 века) — до 80 % их рабочего времени посвящено работе с текстовой информацией.

Хранение информации при использовании компьютеров осуществляется на магнитных дисках или лентах, на лазерных дисках (CD и DVD), специальных устройствах энергонезависимой памяти (флэш-память и пр.). Эти методы постоянно совершенствуются, изобретаются и носители информации. Обработку информации (воспроизведение, преобразование, передача, запись на внешние носители) выполняет процессор компьютера. С помощью компьютера возможно создание и хранение новой информации любых видов, для чего служат специальные программы, используемые на компьютерах, и устройства ввода информации.

Особым видом информации в настоящее время можно считать информацию, представленную в глобальной сети Интернет. Здесь используются особые приемы хранения, обработки, поиска и передачи распределенной информации больших объемов и особые способы работы с различными видами информации. Постоянно совершенствуется программное обеспечение, обеспечивающее коллективную работу с информацией всех видов.

 

Вопрос3)

Информационный процесс — процесс получения, создания, сбора, обработки, накопления, хранения, поиска, распространения и использования информации.

В результате исполнения информационных процессов осуществляются информационные права и свободы, выполняются обязанности соответствующими структурами производить и вводить в обращение информацию, затрагивающую права и интересы граждан, а также решаются вопросы защиты личности, общества, государства от ложной информации и дезинформации, защиты информации и информационных ресурсов ограниченного доступа от несанкционированного доступа.

С точки зрения информационного права, при выполнении информационных процессов возникают общественные отношения, подлежащие правовому регулированию в информационной сфере

. Накопление –это сбор данных

Сбор данных — это деятельность субъекта по накоплению данных с целью обеспечения достаточной полноты. Соединяясь с адекватными методами, данные рождают информацию, способную помочь в принятии решения. Например, интересуясь ценой товара, его потребительскими свойствами, мы собираем информацию для того, чтобы принять решение: покупать или не покупать его.

Передача данных — это процесс обмена данными. Предполагается, что существует источник информации, канал связи, приемник информации, и между ними приняты соглашения о порядке обмена данными, эти соглашения называются протоколами обмена. Например, в обычной беседе между двумя людьми негласно принимается соглашение, не перебивать друг друга во время разговора.

Хранение данных — это поддержание данных в форме, постоянно готовой к выдаче их потребителю. Одни и те же данные могут быть востребованы не однажды, поэтому разрабатывается способ их хранения (обычно на материальных носителях) и методы доступа к ним по запросу потребителя.

Обработка данных — это процесс преобразования информации от исходной ее формы до определенного результата. Сбор, накопление, хранение информации часто не являются конечной целью информационного процесса. Чаще всего первичные данные привлекаются для решения какой-либо проблемы, затем они преобразуются шаг за шагом в соответствии с алгоритмом решения задачи до получения выходных данных, которые после анализа пользователем предоставляют необходимую информацию.

 

Вопрос4)

Понятие "технология” в переводе с греческого означает искусство, мастерство, умение. Технология, как процесс, означает последовательность ряда действий с целью переработки чего-либо. Технологический процесс реализуется различными средствами и методами.

Процесс материального производства предполагает обработку ресурсов с целью получения материальных продуктов (товаров). Если речь идет об информационных технологиях, то роль ресурсов играют данные.

Информационная технология — процесс, использующий совокупность средств методов сбора, обработки и передачи первичной информации для получения информации нового качества о состоянии объекта, т.е. информационного продукта.

Классификация информационных технологии

· по способу реализации,

· по степени охвата задач управления,

· по классу реализуемых технологических операций,

· по типу пользовательского интерфейса,

· по способу построения сети,

· по обслуживаемым предметным областям и пр.

По способу реализации в АИС выделяют традиционные и новые информационные технологии.

По степени охвата задач управления различают следующие АИТ:

· электронная обработка экономических данных;

· автоматизация функций управления;

· поддержка принятия решений;

· электронный офис;

· экспертная поддержка.

По классу реализуемых технологических операций выделяют такие АИТ:

· работа с текстовым редактором;

· работа с табличным процессором;

· работа с СУБД.

· работа с графическими объектами;

· мультимедийные системы;

· гипертекстовые системы.

По типу пользовательского интерфейса различают АИТ пакетные, диалоговые, сетевые.

По способу построения сети бывают АИТ локальные, многоуровневые, распределенные.

По обслуживаемым предметным областям выделяют АИТ в бухгалтерском учете, в банковской деятельности, в налогообложении, в страховом деле, в казначействе и других сферах.

Новые инфо.технологии

На данный момент, новые информационные технологии играют огромную роль в современных международных отношениях. Без новых информационных технологий полное теоретическое осмысление международных отношений просто невозможно. Они применяются в процессе формировании и выработки внешнеполитических решений и незаменимы при решении любой практической задачи.

Новые информационные технологии, также, играют особо важную роль в развитии знаний и общества. Они позволяют не только качественно и на высоком уровне выполнять профессиональную подготовку человека, а и являются важным средством развития коммуникационных отношений. Сегодня с помощью новых информационных систем осуществляется процесс обучения, познания и усовершенствования человека.

 

 

Вопрос5)

В основе разработки и использовании любой ИТ должен лежать системный подход. Только такой подход может комплексно охватить проблему. Если ИТ рассматривается как система, то под этой системой мы будем понимать совокупность функциональных элементов и отношений между ними, преследующих определенную цель на определенном временном интервале. В зависимости от поставленной цели будут меняться функциональные элементы и отношения между ними. Это значит, что мы можем выделить ряд конкретных ИТ в зависимости от цели их применения.

Есть целый ряд определений систем ИТ. Мы рассмотрим ИТ как часть метасистемы - информатики. ИТ как совокупность моделей, методов и средств обработки данных представляет собой логический уровень информатики. На этом уровне на основе программно-аппаратных средств ИТ и средств связи создаются информационно-управляющие системы на пользовательском, прикладном уровне информатики.

Существует достаточно условная градация систем: по характеру функционирования (детерминированные и вероятностные) и по степени сложности. Критерий сложности достаточно условный, но тем не менее удобен и применяем, поэтому классификацию систем по указанному принципу.

Простые динамические системы - не имеют разветвленной структуры, не большое количество элементов и связей. Они могут содержать от 10 до 1000 элементов, в простых системах отсутствуют иерархические уровни.

Сложные системы - с развитой иерархической структурой, большим числом элементов и внутренних связей. Связи могут содержать от 10000 до 10 млн. элементов. Их невозможно или очень трудно корректно описать математически.

Очень сложные системы - большие системы. Академик Б.И. Петров, один из основоположников теории больших систем, предложил для них ряд необходимых и достаточных свойств, наличие которых позволяет считать систему большой. К этим свойствам относятся:

наличие структуры;

наличие единой цели функционирования;

устойчивость к внешним и внутренним возмущениям;

комплексный состав системы;

способность к развитию (и в пределе способность к самообучению).

Рассмотрим, какие из перечисленных свойств можно отнести к ИТ как системе и достойна ли она называться большой системой.

2. Наличие единой цели функционирования.

Большая система имеет единую цель. Но в большой системе обязательно наличие подсистем, у которых также есть собственные цели. Понятно, что цель системы подчиняет себе цели подсистем.

3. Устойчивость к внешним и внутренним возмущениям.

ИТ должна удовлетворять требованиями той организационной системы, в которую она внедряется. Информационные процессы ИТ непрерывно подвергаются внешним и внутренним возмущениям со стороны организационной системы. Эти возмущения могут возникать по следующим причинам: неадекватность выбранных моделей реальным процессам, неидеальность реализации модели, ошибки в деятельности персонала, ненадежность аппаратных и программных средств.

Наконец, пятое условие соответствия ИТ «большим системам» - способность к развитию.

Развитие ИТ должно идти, во-первых, по пути охвата все большего количества уровней управления в системе, и, во-вторых, по пути расширения количества выполняемых функций. Принципиально новые возможности в развитии технологии дает появление новых средств. Это средства реализации информационных процессов, возможно, разработка новых носителей информации, новые средства накопления. Это совершенствования вычислительных средств, программно-аппаратных средств, например. Совершенствование экспертных систем даст возможность изменить характер «принятия решений» - то есть доберется о верхнего уровня организационной структуры системы управления.

Таким образом, ответив положительно на пять предъявленных вопросов, соответствует ли ИТ структуре «больших систем», мы получим право и возможность поступать с ИТ в соответствии с системным подходом. Воспользуемся этим правом и приступим к созданию системы «информационная технология».

Вопрос 6)??????????

Информационное обеспечение усилий по доведению до российской и мировой общественности достоверной информации о государственной политике РФ, ее официальной позиции по социально значимым события российской и международной жизни определена данной Доктриной в качестве одной из главных составляющих национальных интересов страны в информационной сфере (п.1. «Информационная безопасность Российской Федерации»).

Во-вторых, роль государства в рассматриваемой сфере обусловлена и сломом старого, советского внешнепропагандистского комплекса и отсутствием на во многом переломном для страны современном этапе его заменителя. Очевидно, что тот пропагандистский комплекс, который сложился в стране в 1990-е годы, не вполне адекватен современным задачам.

Следует отметить, что обновление такого комплекса основываться на демократической основе, без каких-либо сползаний в сторону «имперской» идеологии или - исходя из нынешней ограниченности ресурсов российской казны - организационно-структурной «гигантомании». В этом контексте предложен вариант организационно-структурного построения государственного центра, который бы осуществлял научные исследования и координировал усилия государства, СМИ и экспертной среды в области внешнеполитической пропаганды.

ХП. Несомненно, что Россия имеет колоссальный и оригинальный опыт внешнеполитической информационной работы. Однако для нее, как только входящей в семью демократических наций, чрезвычайно интересен опыт ведущих информационных держав Запада, и прежде всего - США (практическую пользу можно, например, извлечь из американского опыта подключения и привлечения к пропагандистской работе за рубежом так называемых «мозговых трестов» - неправительственных экспертных организаций, не только генерирующих идеи и ведущих качественные аналитические разработки, но принимающих активное участие в реализации внешней политики США).


Вопрос 7)

Вопрос 8)

Моделирование – это метод познания окружающего мира, состоящий в создании и исследовании моделей.

Модель – некий новый объект, который отражает существенные особенности изучаемого объекта, явления или процесса.

Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью.

Система – сложный объект, состоящий из взаимосвязанных частей (элементов). Всякая система имеет определенное назначение (цель).

Признаки классификаций моделей:

1) по области использования;

2) по фактору времени;

3) по отрасли знаний;

4) по форме представления

1) Классификация моделей по области использования:

Учебные модели – используются при обучении. Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

Опытные модели – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик.

Научно – технические модели - создаются для исследования процессов и явлений. К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

Игровые модели – это военные, экономические, спортивные, деловые игры. Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. С помощью игровых моделей можно оказывать психологическую помощь больным, разрешать конфликтные ситуации.

Имитационные модели непросто отражают реальность с той или иной степенью точности, а имитируют ее. Эксперименты с моделей проводят при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название (метод проб и ошибок). Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов над животными.

2) Классификация моделей по фактору времени:

Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту).

Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

Таким образом, один и тот же объект можно охарактеризовать и статической и динамической моделью.

3) Классификация моделей по отрасли знаний

- это классификация по отрасли деятельности человека: математические, биологические, химические, социальные, экономические, исторические и тд

4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты

Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные и вербальные; информационные

Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель способствует сознательной деятельности человека. Примером мысленной модели является модель поведения при переходе через дорогу. Человек анализирует ситуацию на дороге (какой сигнал подает светофор, как далеко находятся машины, с какой скоростью они движутся и т.п.) и вырабатывается модель поведения. Если ситуация смоделирована правильно, то переход будет безопасным, если нет, то может произойти дорожно-транспортное происшествие.

Вербальные (от лат. verbalis – устный) – мысленные модели, выраженные в разговорной форме. Используется для передачи мыслей.

Чтобы информацию можно было использовать для обработки на компьютере, необходимо выразить ее при помощи системы знаков, т.е. формализовать. Правила формализации должны быть известны и понятны тому, кто будет создавать и использовать модель. Поэтому наряду с мысленными и вербальными моделями используют более строгие – информационные модели.

Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойства этого объекта.

Типы информационных моделей:

Табличные – объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

Сетевые – применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализации информационные модели бывают образно-знаковые и знаковые.

По форме представления образно-знаковых моделей среди них можно выделить следующие группы:

• геометрические модели, отображающие внешний вид оригинала (рисунок, пиктограмма, чертеж, план, карта, объемное изображение);

• структурные модели, отражающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);

• словесные модели, зафиксированные (описанные) средствами естественного языка;

• алгоритмические модели, описывающие последовательность действий.

Знаковые модели можно разделить на следующие группы:

• математические модели, представленные математическими формулами, отображающими связь различных параметров объекта, системы или процесса;

• специальные модели, представленные на специальных языках (ноты, химические формулы и т. п.);

• алгоритмические модели, представляющие процесс в виде программы, записанной на специальном языке.

Вопрос 9)

Методы и технологии моделирования

Все многообразие способов моделирования, рассматриваемого теорией моделирования, можно

условно разделить группы.

Аналитическое моделирование заключается в построении модели, основанной на описании

поведения объекта или системы объектов в виде аналитических выражений — формул. При таком моделировании объект описывается системой линейных или нелинейных алгебраических или дифференциальных уравнений, решение которых может дать представление о свойствах объекта. К полученной аналитической модели, с учетом вида и сложности формул применяются аналитические или приближенные численные методы. Реализация численных методов обычно возлагается на вычислительные машины, обладающие большими вычислительными мощностями. Тем не менее, применение аналитического моделирования ограничено сложностью получения и анализа выражений для больших систем.

Имитационное моделирование предполагает построение модели с характеристиками, адекватными оригиналу, на основе какого-либо его физического или информационного принципа. Это означает, что внешние воздействия на модель и объект вызывают идентичные изменения свойств оригинала и модели. При таком моделировании отсутствует общая аналитическая модель большой размерности, а объект представлен системой, состоящей из элементов, взаимодействующих между собой и с внешним миром. Задавая внешние воздействия, можно получить характеристики системы и провести их анализ. В последнее время имитационное моделирование все больше ассоциируется с моделированием объектов на компьютере, что позволяет в интерактивном режиме исследовать модели самых разных по природе объектов. При имитационном моделировании воспроизводится алгоритм функционирования системы во времени – поведение системы; причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания, что позволяет по исходным данным получить дающие возможность оценить характеристики системы сведения о состояниях процесса в определенные моменты времени. Основным преимуществом имитационного моделирования является возможность решения сложных задач.

Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные и другие воздействия, которые часто создают трудности при аналитических исследованиях.

В настоящее время имитационное моделирование – наиболее эффективный метод исследования систем, а часто единственный, практически доступный метод получения информации о поведении системы.

Эвристическое моделирование – разновидность инновационного моделирования, заключающаяся в стремлении человека воспроизвести то, что однажды уже привело его случайно к успеху. Этот вид моделирования представляет собой механизм самообучения человека на собственном положительном опыте.

Эволюционное моделирование - направление в математическом моделировании, объединяющее компьютерные методы моделирования биологических процессов эволюции, а также другие, идеологически близкие направления в математическом программировании, использующие эвристические методы и эволюционный принцип. Инструментами эволюционного моделирования являются генетические алгоритмы, генетическое программирование, эволюционные стратегии, эволюционное программирование, а также искусственные нейронные сети, нечеткая логика.

Вопрос 10)

Информационная модель — модель объекта, представленная в виде информации, описывающей существенные для данного рассмотрения параметры и переменные величины объекта, связи между ними, входы и выходы объекта и позволяющая путём подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта. Информационные модели нельзя потрогать или увидеть, они не имеют материального воплощения, потому что строятся только на информации.

Информационные модели делятся на описательные и формальные.

Описательные информационные модели - это модели, созданные на естественном языке (т.е. на любом языке общения между людьми: английском, русском, китайском, мальтийском и т.п.) в устной или письменной форме.

Формальные информационные модели - это модели, созданные на формальном языке (т.е. научном, профессиональном или специализированном). Примеры формальных моделей: все виды формул, таблицы, графы, карты, схемы и т.д.

Хроматические (информационные) модели - это модели, созданные на естественном языке семантики цветовых концептов и их онтологических предикатов (т.е. на языке смыслов и значений цветовых канонов, репрезентативно воспроизводившихся в мировой культуре). Примеры хроматических моделей: "атомарная" модель интеллекта (АМИ), межконфессиональная имманентность религий (МИР), модель аксиолого-социальной семантики (МАСС) и др., созданные не базе теории и методологии хроматизма.

Назначение и виды информационных моделей

Назначение информационных моделей чаще всего состо­ит в получении данных, которые могут быть использованы для подготовки и принятия решений экономического, соци­ального, организационного или технического характера, для достижения наилучших показателей деятельности объ­екта моделирования. Объект моделирования можно рассмат­ривать как систему. Система — это сложный объект, состоя­щий из взаимосвязанных частей (элементов) и существую­щий как единое целое. Всякая система имеет определенное назначение (функцию, цель). Структура — это совокупность связей между элементами системы, т. е. внутренняя органи­зация системы.

Для отражения состояния систем используются статиче­ские и динамические модели.

Модели, описывающие состояние системы в определен­ный момент времени, называются статическими информа­ционными моделями (строение молекул, строение Солнеч­ной системы, «Система природы» К. Линнея).

Модели, описывающие процессы изменения и развития систем, называются динамическими информационными моделями (процесс протекания химической реакции, ядер­ной реакции, движения тел, развитие организмов и попу­ляций).

Для отражения систем с различными структурами ис­пользуются различные виды информационных моделей:

Табличные модели применяются для описания объектов, обладающих одинаковыми наборами свойств. Могут быть динамическими и статическими. Свойства объекта пред­ставлены в виде списка, а их значения размещаются в ячейках прямоугольной таблицы (закон и Периодическая таблица химических элементов Д. И. Менделеева).

В иерархических моделях объекты распределены по уровням. Каждый элемент более высокого уровня мо­жет состоять из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня (генеалогическое дере­во, классификация объектов).

Сетевые модели применяются для отражения таких си­стем, в которых связи между элементами имеют слож­ную структуру (сеть Интернет, телефонная сеть, про­цесс передачи мяча в коллективной игре, например, в футболе). Могут быть статическими и динамическими.

Вопрос 11)

Основные этапы компьютерного моделирования

1. Постановка задачи характеризуется описанием объекта моделирования в общем виде, определением конечного результата моделирования и имеющихся условий (возможно ограничений).

2. Определение цели моделирования. От выбранной цели зависит, какие характеристики объекта моделирования считать существенными, какие методы лучше подходят для решения данной задачи.

3. Анализ объекта моделирования для выделения существенных свойств с точки зрения цели моделирования. Нет единственно правильного способа выделения существенных свойств объекта моделирования, поскольку объекты моделирования серьезно отличаются. Это может быть материальный объект, некая сложная информационная система, промышленный процесс и пр. Иногда необходимые свойства объекта могут быть очевидны, а порой приходится перебрать множество вариантов, прежде чем будет достигнута цель моделирования. Поэтому к этапам п. 2 и п. 3 можно возвращаться многократно. Адекватность модели объекту моделирования будет зависеть еще и от того, как выделен­ные существенные свойства мы сможем формализовать, т. е. в какой форме мы их отобразим.

4. Формализация (определение и приведение к выбранной форме). Важный этап моделирования, влияющий на результат. От выбранной формы представления данных зависит, насколько точен будет конечный результат, в какой степени построенная модель соответствует объекту. Формами представления могут быть: словесное описание, чертеж, таблица, формула, схема, алгоритм, компьютерная программа и т. п.

Итак, форма представления модели определена, и данные формализованы для обработки. Конечной целью этого этапа является создание информационной модели.

5. Разработка компьютерной модели для проведения эксперимента:

· создание математической или имитационной модели для исследования с помощью компьютера;

· проверка данных и условий на непротиворечивость;

· планирование эксперимента.

Существует множество программных комплексов, кото­рые позволяют строить и исследовать самые разные по на­значению модели. Разнообразное программное обеспечение позволяет преобразовать исходную информационную модель в компьютерную и провести компьютерный эксперимент.

В процессе разработки компьютерной модели исходная информационная модель будет претерпевать некоторые из­менения по форме представления, так как должна ориенти­роваться на определенную программную среду и инструмен­тарий. После внесения уточнений необходимо перепрове­рять данные и условия на непротиворечивость. В результате проверки может возникнуть необходимость возврата к п. 2 или п. 3.

План эксперимента должен четко отражать последова­тельность работы с моделью.

6. Компьютерный эксперимент:

· аисследование модели;

· анализ полученных результатов на соответствие цели моделирования;

· уточнение модели.

Компьютерный эксперимент включает в себя исследова­ние модели в соответствии с поставленной целью.

Конечная цель моделирования — принятие решения, ко­торое должно быть выработано на основе всестороннего ана­лиза результатов моделирования. Анализ полученных ре­зультатов на соответствие цели моделирования — решаю­щий этап для дальнейшей работы. Если результаты не соответствуют целям поставленной задачи, значит, на пре­дыдущих этапах были допущены ошибки. Если такие ошиб­ки выявлены, то требуется уточнение (корректировка) моде­ли. Корректировка может быть незначительной в рамках проведения самого эксперимента или существенной, требую­щей возврата к предыдущим этапам.

Процесс повторяется до тех пор, пока результаты не бу­дут удовлетворять цели моделирования и их можно будет использовать для принятия решений.

 

Пример построения информационной модели

Задача Фибоначчи (из «Книги абака» итальянcкого ма­тематика Фибоначчи, 1228 г.):

«Некто поместил пару кроликов в некоем месте, огоро­женном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что каждый месяц пара кроликов произво­дит на свет другую пару, а рождают кролики через два меся­ца после своего рождения».

Задача Фибоначчи сводится к последовательности чисел:

1, 1, 2, 3, 5, 8, 13, 21,...,

где каждый последующий член равен сумме двух предыду­щих, за исключением первых двух членов.

Математическая модель размножения кроликов:

f(n) = f(n - 1) + f(n - 2), n > 2,

где f(n) — количество пар кроликов, рожденных за n меся­цев, f(1) = 1 и f(2) = 1.

 

Вопрос 12)

Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные. Основныефункции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств.

Структура компьютера — это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов. Персональный компьютер — это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения. Достоинствами ПК являются:

Современную архитектуру компьютера определяют следующие принципы:

  1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).
  2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.
  3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

 

Вопрос 13)

Основной частью компьютера является системный блок, в котором имеются следующие внутренние устройства: блок питания; главная (или материнская) плата, по которой осуществляется информационная связь между различными компонентами; процессор (главная микросхема), производящий операции по обработке данных и управлению устройствами; оперативная память, где находятся данные, с которыми работает процессор; видеоплата, осуществляющая обработку видеоданных для дисплея; звуковая плата, обрабатывающая звуковые данные и выводящая их в виде звука с помощью колонок. Общие понятия. Материнская плата, процессор, оперативная память, видеоплата, звуковая плата, жесткий диск и динамик находятся внутри системного блока, не видны пользователю, точнее не имеют выхода на переднюю панель системного блока. Далее коротко рассмотрим основныекомпоненты.

Корпус компьютера предназначен для установки в нем основных устройств и предохранения их от пыли и других внешних воздействий, а также защищает пользователя от электромагнитного излучения компонентов, которые в нем находятся. На передней панели помещены индикаторы и кнопки, на нее также выходят лицевой стороной некоторые внутренние устройства (накопители для гибких дисков, DVD-ROM и CD-ROM). Материнская плата (англ. motherboard, MB, также используется название англ. mainboard — главная плата; сленг. мама, мать, материнка) — сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня (центральный процессор, контроллер оперативной памяти и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Именно материнская плата объединяет и координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители.

Основные шинные интерфейсы материнских плат:

ISA (Industry Standard Architecture). Разрешает связать между собой все устройства системного блока, а также обеспечивает простое подключение новых устройств через стандартные слоты. Пропускная способность составляет до 5,5 Мбайт/с. В современных компьютерах может использоваться лишь для подсоединения внешних устройств, которые не требуют большей пропускной способности (звуковые карты, модемы и т.д.).

EISA (Extended ISA). Расширение стандарта ISA. Пропускная способность возросла до 32 Мбайт/с. Как и стандарт ISA, этот стандарт исчерпал свои возможности и в будущем выпуск плат, которые поддерживают эти интерфейсы прекратится.

VLB (VESA Local Bus). Интерфейс локальной шины стандарта VESA. Локальная шина соединяет процессор с оперативной памятью в обход основной шины. Она работает на большей частоте, чем основная шина, и позволяет увеличить скорость передачи данных. Позже, в локальную шину "врезали" интерфейс для подключения видеоадаптера, который требует повышенной пропускной способности, что и привело к появлению стандарта VLB. Пропускная способность - до 130 Мбайт/с, рабочая тактовая частота - 50 МГц, но она зависит от количества устройств, подсоединенных к шине, что является главным недостатком интерфейса VLB.

PCI (Peripherial Component Interconnect). Стандарт подключения внешних устройств, введенный в ПК на базе процессора Pentium. По своей сути, это интерфейс локальной шины с разъемами для подсоединения внешних компонентов. Данный интерфейс поддерживает частоту шины до 66 МГц и обеспечивает быстродействие до 264 Мбайт/с независимо от количества подсоединенных устройств. Важным нововведением этого стандарта является поддержка механизма plug-and-play, суть которого состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит автоматическая конфигурация этого устройства.

FSB (Front Side Bus). Начиная с процессора Pentium Pro для связи с оперативной памятью используется специальная шина FSB. Эта шина работает на частоте 100-133 МГц и имеет пропускную способность до 800 Мбайт/с. Частота шины FSB является основным параметром, именно она указывается в спецификации материнской платы. За шиной PCI осталась лишь функция подключения новых внешних устройств.

AGP (Advanced Graphic Port). Специальный шинный интерфейс для подключения видеоадаптеров. Разработан в связи с тем, что параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Частота этой шины - 33 или 66 МГц, пропускная способность до 1066 Мбайт/с.

USB (Universal Serial Bus). Стандарт универсальной последовательной шины определяет новый способ взаимодействия компьютера с периферийным оборудованием. Он разрешает подключать до 256 разных устройств с последовательным интерфейсом, причем устройства могут подсоединяться цепочкой. Производительность шины USB относительно небольшая и составляет 1,55 Мбит/с. Среди преимуществ этого стандарта следует отметить возможность подключать и отключать устройства в "горячем режиме" (то есть без перезагрузки компьютера), а также возможность объединения нескольких компьютеров в простую сеть без использования специального аппаратного и программного обеспечения.




Дата добавления: 2015-01-29; просмотров: 29 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.032 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав