Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Принципы системного подхода к проектированию СУ

Читайте также:
  1. II. ОСНОВНЫЕ ПРИНЦИПЫ
  2. II. Принципы, требования и гарантии законности.
  3. II. Этические принципы
  4. III Принципы организации производственных процессов
  5. IV. Принципы конституционного судопроизводства
  6. VI. Общие принципы поведения должностных лиц
  7. А) Общие принципы и подходы к изучению истории отечественного государства и права.
  8. Авторы цивилизационного подхода -А.Тойнби и О. Шпенглер
  9. Адаптация. Ее роль в норме и патологии. Общие принципы и механизмы адаптации.
  10. Аденомиоз. Клиника, диагностика, принципы лечения.

Основные идеи и принципы проектирования сложных систем выражены в системном подходе. Как и большинство взрослых образованных людей, правильно использующих родной язык без привлечения правил грамматики, инженеры применяют системный подход без обращения к пособиям по системному анализу. Однако интуитивный подход без применения правил системного анализа может оказаться недостаточным для решения все более усложняющихся задач инженерной деятельности.

Основной общий принцип системного подхода заключается в рассмотрении частей явления или сложной системы с учетом их взаимодействия. Системный подход включает в себя выявление структуры системы, типизацию связей, определение атрибутов, анализ влияния внешней среды.

Системный подход появился как результат работы над созданием сложных (технических) систем. Под сложными техническими системами понимают объекты, характеризующиеся следующими свойствами:

· большое количество элементов;

· сложность формализации;

· иерархичность построения;

· наличие взаимодействия «человек-машина»;

· необходимость учета неопределенных факторов различной природы;

· сложность информационных потоков;

· эмерджентность (интегративность).

Понятие «иерархия» (греч. hierarchia, от hieros — священный и arche — власть) — это расположение частей и элементов целого в порядке от высшего к низшему. Термин «иерархия» был введен во второй половине V в. афинским епископом Дионисием Ареопагитом в трактатах «О небесной иерархии» и «О церковной иерархии» и до XIX в. употреблялся для характеристики организациихристианской церкви. В науке понятие «иерархия» стало разрабатываться со второй половины XIX в. и применялось для описания сословно-классового деления общества и характеристикеструктуры власти, в особенности бюрократии. В XX в. с появлением общей теории систем понятие «иерархия» стало применяться для описания любых системных объектов. Иерархически организованные формы существуют во всех сферах объективной реальности: неорганической, биологической, социальной.

 

Пока не существует единого мнения по поводу того, какие принципы относить к общим принципам системного подхода. Наиболее часто говорят об основных пяти принципах[3]:

1. Принцип системности – является широким обобщением целостности с позиций диалектики. При этом утверждается главенство целого над частями, но большое значение придается взаимосвязи системы и подсистем (целого и частей системы). Видный специалист по системным исследованиям В.Н. Садовский характеризует суть принципа системности следующими основными положениями:

- целостность объектов внешнего мира и предметов познания;

- взаимосвязь элементов любого объекта (предмета) и данного объекта с множеством других объектов;

- динамическая природа любого объекта;

- функционирование и развитие любого объекта в результате взаимодействия с окружающей его средой при главенстве внутренних закономерностей объекта (его самодвижения) над внешними.

2. Принцип иерархического строения мира – отражение взаимозависимости целого и частей отдельно взятой системы, иерархия систем, иерархия моделей и т.д.

3. Принцип многомодельности предполагает, что познание системы (сложной) может быть достигнуто лишь путем привлечения необходимых моделей, отражающих различные аспекты этой системы, и проведением совместных исследований на этих моделях.

4. Принцип системного научного объяснения.

5. Принцип диалектического сочетания детерминизма и антидетерминизма.

Интерпретация и конкретизация системного подхода имеют место в ряде известных подходов с другими названиями, которые также можно рассматривать как компоненты системотехники. Таковы структурный, блочно-иерархический, объектно-ориентированный подходы.

При структурном подходе, как разновидности системного, требуется синтезировать варианты системы из компонентов (блоков) и оценивать варианты при их частичном переборе с предварительным прогнозированием характеристик компонентов.

Блочно-иерархический подход к проектированию использует идеи декомпозиции сложных описаний объектов и соответственно средств их создания на иерархические уровни и аспекты, вводит понятие стиля проектирования (восходящее и нисходящее), устанавливает связь между параметрами соседних иерархических уровней.

Ряд важных структурных принципов, используемых при разработке информационных систем и прежде всего их программного обеспечения (ПО), выражен в объектно-ориентированном подходе к проектированию. Такой подход имеет следующие преимущества в решении проблем управления сложностью и интеграции ПО:

1. вносит в модели приложений большую структурную определенность, распределяя представленные в приложении данные и процедуры между классами объектов;

2. сокращает объем спецификаций благодаря введению в описания иерархии объектов и отношений наследования между свойствами объектов разных уровней иерархии;

3. уменьшает вероятность искажения данных вследствие ошибочных действий за счет ограничения доступа к определенным категориям данных в объектах. Описание в каждом классе объектов допустимых обращений к ним и принятых форматов сообщений облегчает согласование и интеграцию ПО.

Для всех подходов к проектированию сложных систем характерны также следующие особенности.

1. Структуризация процесса проектирования, выражаемая декомпозицией проектных задач и документации, выделением стадий, этапов, проектных процедур. Эта структуризация является сущностью блочно-иерархического подхода к проектированию.

2. Итерационный характер проектирования.

3. Типизация и унификация проектных решений и средств проектирования.

В зависимости от последовательности решения задач иерархических уровней различают нисходящее, восходящее и смешанное проектирование (стили проектирования). Последовательность решения задач от нижних уровней к верхним характеризует восходящее проектирование, обратная последовательность приводит к нисходящему проектированию, в смешанном стиле имеются элементы как восходящего, так и нисходящего проектирования. В большинстве случаев для сложных систем предпочитают нисходящее проектирование. Отметим, однако, что при наличии заранее спроектированных составных блоков (устройств) можно говорить о смешанном проектировании.

Неопределенность и нечеткость исходных данных при нисходящем проектировании (так как еще не спроектированы компоненты) или исходных требований при восходящем проектировании (поскольку ТЗ имеется на всю систему, а не на ее части) обусловливают необходимость прогнозирования недостающих данных с последующим их уточнением, т. е. последовательного приближения к окончательному решению (итерационность проектирования).

Наряду с декомпозицией описаний на иерархические уровни применяют разделение представлений о проектируемых объектах на аспекты.

Аспект описания (страта) — описание системы или ее части с некоторой оговоренной точки зрения, определяемой функциональными, физическими или иного типа отношениями между свойствами и элементами.

Различают функциональный, информационный, структурный и поведенческий (процессный) аспекты. Функциональное описание относят к функциям системы и чаще всего представляют его функциональными схемами. Информационное описание включает в себя основные понятия предметной области (сущности), словесное пояснение или числовые значения характеристик (атрибутов) используемых объектов, а также описание связей между этими понятиями и характеристиками. Информационные модели можно представлять графически (графы, диаграммы сущность - отношение), в виде таблиц или списков. Структурное описание относится к морфологии системы, характеризует составные части системы и их межсоединения и может быть представлено структурными схемами, а также различного рода конструкторской документацией. Поведенческое описание характеризует процессы функционирования (алгоритмы) системы и (или) технологические процессы создания системы. Иногда аспекты описаний связывают с подсистемами, функционирование которых основано на различных физических процессах.

Отметим, что в общем случае выделение страт может быть неоднозначным. Так, помимо указанного подхода очевидна целесообразность выделения таких аспектов, как функциональное (разработка принципов действия, структурных, функциональных, принципиальных схем), конструкторское (определение форм и пространственного расположения компонентов изделий), алгоритмическое (разработка алгоритмов и программного обеспечения) и технологическое (разработка технологических процессов) проектирование систем. Примерами страт в случае САПР могут служить также рассматриваемые далее виды обеспечения автоматизированного проектирования.

В теории систем и системотехнике введен ряд терминов, среди них к базовым нужно отнести следующие понятия.

Система — множество элементов, находящихся в отношениях и связях между собой.

Элемент - такая часть системы, представление о которой нецелесообразно подвергать при проектировании дальнейшему членению.

Сложная система - система, характеризуемая большим числом элементов и, что наиболее важно, большим числом взаимосвязей элементов. Сложность системы определяется также видом взаимосвязей элементов, свойствами целенаправленности, целостности, членимости, иерархичности, многоаспектности. Очевидно, что современные автоматизированные информационные системы и, в частности, САПР являются сложными в силу наличия у них перечисленных свойств и признаков.

Подсистема —часть системы (подмножество элементов и их взаимосвязей), которая имеет свойства системы. Подсистема — система, по отношению к которой рассматриваемая система является подсистемой.

Структура - отображение совокупности элементов системы и их взаимосвязей; понятие структуры отличается от понятия самой системы также тем, что при описании структуры принимают во внимание лишь типы элементов и связей без конкретизации значений их параметров.

Параметр - величина, выражающая свойство или системы, или ее части, или влияющей на систему среды. Обычно в моделях систем в качестве параметров рассматривают величины, не изменяющиеся в процессе исследования системы. Параметры подразделяют на внешние, внутренние и выходные, выражающие свойства элементов системы, самой системы, внешней среды соответственно. Векторы внутренних, выходных и внешних параметров далее обозначены X = (х1, х2,..., хn), Y = (у1, у2,..., ym), Q= (q1,, q2..., qk) соответственно.

Фазовая переменная - величина, характеризующая энергетическое или информационное наполнение элемента или подсистемы.

Состояние —совокупность значений фазовых переменных, зафиксированных в одной временной точке процесса функционирования.

Поведение (динамика) системы — изменение состояния системы в процессе функционирования.

Система без последействия — ее поведение при t > t0 определяется заданием состояния в момент t0 и вектором внешних воздействий Q(t). В системах с последействием, кроме того, нужно знать предысторию поведения, т.е. состояния системы в моменты, предшествующие t0.

Вектор переменных V, характеризующих состояние (вектор переменных состояния), — неизбыточное множество фазовых переменных, задание значений которых в некоторый момент времени полностью определяет поведение системы в дальнейшем (в автономных системах без последействия).

Пространство состояний — множество возможных значений вектора переменных состояния.

Фазовая траектория — представление процесса (зависимости V(f)) в виде последовательности точек в пространстве состояний.

К характеристикам сложных систем, как сказано выше, часто относят следующие понятия.

Целенаправленность — свойство искусственной системы, выражающее назначение системы. Это свойство необходимо для оценки эффективности вариантов системы.

Целостность — свойство системы, характеризующее взаимосвязанность элементов и наличие зависимости выходных параметров от параметров элементов, при этом большинство выходных параметров не является простым повторением или суммой параметров элементов.

Иерархичность — свойство сложной системы, выражающее возможность и целесообразность ее иерархического описания, т. е. представления в виде нескольких уровней, между компонентами которых имеются отношения целое — часть.

Моделирование имеет две четко различимые задачи: 1 - создание моделей сложных систем (в англоязычном написании - modeling); 2 - анализ свойств систем на основе исследования их моделей (simulation).

Синтез также подразделяют на две задачи: 1 — синтез структуры проектируемых систем (структурный синтез); 2 - выбор численных значений параметров элементов систем (параметрический синтез). Эти задачи относятся к области принятия проектных решений.

Примеры. 1. Компьютер является сложной системой в силу наличия у него большого числа элементов, разнообразных связей между элементами и подсистемами, свойств целенаправленности, целостности, иерархичности. К подсистемам компьютера относятся процессор (процессоры), оперативная память, кэш-память, шины, устройства ввода-вывода. В качестве надсистемы могут выступать вычислительная сеть, автоматизированная и (или) организационная система, к которым принадлежит компьютер. Внутренние параметры - времена выполнения арифметических операций, чтения (записи) в накопителях, пропускная способность шин и др. Выходные параметры - производительность компьютера, емкость оперативной и внешней памяти, себестоимость, время наработки на отказ и др. Внешние параметры - напряжение питания сети и его стабильность, температура окружающей среды и др.

2. Для двигателя внутреннего сгорания подсистемами являются коленчатый вал, механизм газораспределения, поршневая группа, системы смазывания и охлаждения Внутренние параметры - число цилиндров, объем камеры сгорания и др. Выходные параметры - мощность двигателя, КПД, расход топлива и др. Внешние параметры -характеристики топлива, температура воздуха, нагрузка на выходном валу.

 




Дата добавления: 2014-12-15; просмотров: 54 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав