Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Эволюция компьютеров

Читайте также:
  1. Cостав и архитектура компьютеров
  2. Адреса компьютеров в Internet
  3. Адресация компьютеров
  4. Антропосоциогенез приматтар эволюциясы
  5. Архитектура вычислительной системы. Классификация компьютеров
  6. Билет 18. Первая российская революция 1905-1907 гг. и эволюция государственного устройства, расстановка политических сил.
  7. Билет. Понятие отражения. Эволюция форм отражения
  8. Биосфера эволюциясының этаптары
  9. Биосфера эволюциясының этаптары.
  10. В конечном счёте, необходима эволюция внутреннего мира человека.

 

Первое поколение ЭВМ (1948 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы - диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести. МЭСМ, БЭСМ-1, М-1, М-2, М-3, "Стрела", "Минск-1", "Урал-Г, "Урал-2", "Урал-3", М-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1К=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина М-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).

Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1x10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

 

Второе поколение ЭВМ (1959 — 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д.

К ЭВМ второго поколения относятся:

- ЭВМ М-40, -50 для систем противоракетной обороны;

-Урал -11, -14, -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

-Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

- Минск-22 предназначена для решения научно-технических и планово-экономических задач;

-БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

-М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

-МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач;

- "Наири" машина общего назначения, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

- Рута-110 мини ЭВМ общего назначения.

ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память — соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

Была достигнута уже величина времени доступа 1x10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

 

Третье поколение ЭВМ (1968 — 1973 гг.)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, снимаемая площадь и масса уменьшились.

В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны - члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР).

В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "Наири-34". Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П. Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, "Электроника -79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др.

К машинам третьего поколения относились "Днепр-2", ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2, "Наири-2" и ряд других.

Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

МиниЭВМ начали применяться и для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования вычислительных машин в качестве средств проектирования.

Применение распределенных вычислительных систем явилось базой для децентрализации решения задач, связанных с обработкой данных на заводах, в банках и других учреждениях. Вместе с тем для данного периода характерным является хронический дефицит кадров, подготовленных в области электронных вычислительных машин. Это особенно касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени.

 

Четвертое поколение ЭВМ (1974 — 1982 гг.)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора) — набора программ, которые организуют непрерывную работу машины без вмешательства человека.

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2x10 -9 с.

В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии.

Программное обеспечение для малых вычислительных машин вначале было совсем элементарным, однако уже к 1968 г. появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс системы. Все это обеспечило доступность малых машин для широкого круга приложений. Сегодня едва ли можно найти такую отрасль промышленности, в которой бы эти машины в той или иной форме успешно не применялись. Их функции на производстве очень многообразны; так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, системы управления процессами. Следует подчеркнуть, что управляющая вычислительная машина теперь все чаще вторгается в область коммерческой обработки данных, где применяется для решения коммерческих задач.

Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о "кризисе программного обеспечения". Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования.

К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 ("Ряд 2"), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ ("Электроника МС 0501", "Электроника-85", "Искра-226", ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус". " Эльбрус -1КБ" имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 М слов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с.

В состав семейства многопроцессорных вычислительных комплексов входит система Эльбрус-1 с производительностью от 1,5 млн. операций в сек до 10 млн. операций в сек и высокопроизводительная система Эльбрус-2 с суммарным быстродействием более 100 млн. операций в сек. Системы Эльбрус-1 и Эльбрус-2 построены на одних и тех же структурных принципах, их модули функционально идентичны, а их процессоры имеют одинаковую систему команд и одинаковую по функциям единую операционную систему (ЕОС).

Симметричный многопроцессорный (10 процессоров) вычислительный комплекс "Эльбрус-2" на матричных ECL БИС, выпущен в 1985 г. (ВС. Бурцев). Производительностью 125 млн. оп/сек (MIPS), емкость оперативной памяти до 144 Мб или 16 М слов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с. Применялся в Центре управления космическими полетами, в области ядерных исследований (Арзамас-16, Челябинск-70) и на объектах Министерства обороны.

1979 г. - начало выпуска в Ереване и Казане модели ЕС-1045. Главный конструктор А.Т.Кучукян.

Электронная вычислительная машина ЕС-1035Б, относящаяся к ЕС ЭВМ «Ряд-2», предназначена для решения широкого круга научно-технических, экономических и других задач и может быть успешно применена в системах пакетной обработки данных коллективного пользования, в развитых системах телеобработки данных, в системах реального времени. ЕС-1035Б выпускается в НРБ. Программное обеспечение ЕС-1035 может работать под управлением операционной системы типа ДОС ЕС или ОС ЕС.

Последняя наиболее эффективно функционирует на моделях ЕС ЭВМ с большим объемом основной памяти (256—512Кбайт). Эта система обеспечивает работу в однопрограммном режиме и режимах мультипрограммирования с фиксированным или переменным числом задач. ОС ЕС планирует очередность выполнения задач соответственно заданным приоритетам и реализует динамическое распределение ресурсов.

Однако серьезные машины работают не только с цифрами, но и с текстом. Для того чтобы закодировать все цифры, буквы и специальные символы необходимо было увеличить разрядность процессора. В результате в 1972 году появился восьмиразрядный i8008, а в 1974 был разработан i8080. Этот восьмиразрядный микропроцессор был выполнен по NMOS (N-channel Metal Oxide Semiconductor) технологии, а его тактовая частота не превышала 2 МГц. У него было более широкое множество микрокоманд. Кроме того, это был первый микропроцессор, который мог делить числа. Процессор i8080 оказал значительное влияние на дальнейшее развитие вычислительной техники. Таким образом история развития электроники подошла к созданию персональных компьютеров.

Во второй половине 70-х гг. сложилась благоприятная ситуация для их появления на рынке. Ощущалась потребность в недорогих ЭВМ, способных поддерживать одно рабочее место. Многие персональные компьютеры того времени базировались на 8-разрядных процессорах, таких как i8080 и его дальнейшей разработкой компанией Zilog Corporation -Z80. Стандартом операционной системы для персональных компьютеров стала разработанная компанией Digital Research CP/M (Control Program for Microcomputers). Она была сделана по образу операционных систем больших ЭВМ, но размеры были гораздо меньше, что давало возможность работать на микропроцессоре.

 

Пятое поколение ЭВМ

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером. Компьютер теперь используется и дома, это компьютерные игры, прослушивание высококачественной музыки, просмотр фильмов.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Параллельно с аппаратным усовершенствованием современных компьютеров разрабатываются и технологические разработки по увеличению количества инструкций. Первой разработкой в этой области стала ММХ (MultiMedia extension- "мультимедиа-расширение") — технология, которая может превратить "простой" Pentium ПК в мощную мультимедийную систему.

Как известно, на кристалле процессора Pentium интегрирован математический сопроцессор. Этот функциональный блок, который отвечает за "перемалывание чисел", но на практике, подобные возможности требуются все же достаточно редко, их используют в основном системы САПР и некоторые программы, решающие чисто вычислительные задачи. У большинства пользователей этот блок просто простаивает.

Создавая технологию ММХ, фирма Intel стремилась решить две задачи, во-первых, задействовать неиспользуемые возможности, а во-вторых, увеличить производительность ЦП при выполнении типичных мультимедиа-программ. С этой целью в систему команд процессора были добавлены дополнительные инструкции (всего их 57) и дополнительные типы данных, а регистры блока вычислений с плавающей запятой выполняют функции рабочих регистров.

Дополнительные машинные команды предназначены для таких операций, как быстрое преобразование Фурье (функция, используемая при декодировании видео), которые зачастую выполняются специальными аппаратными средствами.

Процессоры, использующие технологию ММХ, совместимы с большинством прикладных программ, ведь для "старого" программного обеспечения регистры ММХ выглядят точно так же, как обычные регистры математического сопроцессора. Однако, встречаются и исключения, например, прикладная программа может одновременно обращаться только к одному блоку - либо вычислений с плавающей запятой, либо ММХ. В ином случае результат, как правило, не определен и нередко происходит аварийное завершение прикладной программы.

Технология ММХ - это генеральное направление развития архитектуры процессоров. В первую очередь ее преимущества смогут оценить конечные пользователи -мультимедиа-компьютеры стали заметно мощнее и дешевле.

Эта идея оказалась настолько удачной, что за ММХ проследовал «расширенный ММХ», 3DNow!, «расширенный 3DNow!», а потом SSE и сейчас SSE2.

Кроме технологических решений по увеличению количества инструкций, велась работа и по улучшению процесса производства. Ведь транзисторов для обработки информации становилось все больше и больше, и они в конце концов просто не помещались на кристалл, что приводило к более совершенным решениям. В настоящее время процессоры Intel выпускаются по техпроцессу с нормой в 0,13 мКм, и на одном квадратном миллиметре кристалла располагается миллионы транзисторов. Intel планирует перейти на 0,09 мКм техпроцесс в ближайшем будущем.

 

Intel Itanium

Последним уже завершенным процессором Intel является процессов Intel Itanium (IA-64). По мнению представителей Intel, архитектура процессора Itanium - это самая значительная разработка со времени презентации 386-го процессора в 1985 г. Первые образцы 64-разрядного процессора Intel представляют собой картридж размером примерно 10x6 см, который включает в себя кэш-память третьего уровня емкостью 2 либо 4 Мбайт и радиатор. Картридж монтируется в разъем типа Slot и имеет 418 выводов. Процессор имеет трехуровневую иерархию сверхоперативной памяти. Если кэш-память первого и второго уровней интегрирован прямо на кристалле процессора, то микросхемы кэш-памяти третьего уровня расположены на самой плате картриджа. На реализацию процессора с соблюдением проектных норм 0,13 мКм потребовалось около 320 млн. транзисторов, из которых только 25 млн. пришлось на реализацию самого ядра, а остальные — на кэш-память.

Самый большой модуль процессора — это блок вычислений с плавающей запятой, он занимает около 10% площади кристалла. Производительность Itanium составляет до 6,4 млрд. операций с плавающей запятой в секунду. Благодаря архитектуре EPIC (Explicitly Parallel Instruction Computing) и 15 исполнительным устройствам процессор может выполнять до 20 операций одновременно. При этом он может непосредственно адресовать до 16 Тбайт (240) памяти при пропускной способности до 2,1 Гбайт/с. В процессоре реализована поддержка всех расширений Intel (технологии ММХ, eMMX, SSE, и симметричной мультипроцессорной обработки), за исключением SSE2.

Intel рассматривает Itanium в качестве родоначальника нового семейства процессоров, которое будет развиваться в ближайшие 25 лет. За первой моделью с кодовым названием Merced последуют McKinley, Madison, Deerfield и другие новые версии. По официальным данным, шесть моделей подобных кристаллов уже находятся на стадии разработки. Ожидается, что процессор McKinley дебютирует с тактовой частотой в 2 ГГц или выше. По имеющейся информации, все 64-разрядные процессоры Intel будут содержать в своем названии слово Itanium, a McKinley, Madison и прочие имена так и останутся кодовыми названиями. Таким образом, скорее всего официально анонсированы будут Itanium II, Itanium III и т.д.

 

 




Дата добавления: 2015-01-30; просмотров: 40 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав