Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Химическая связь в комплексных соединениях и их строение

Читайте также:
  1. I. Связь с Трудовым кодексом Российской Федерации. Общие требования
  2. II. Связь лексикографии с методикой обучения иностранным языкам
  3. III. Строение атома. Развитие периодического закона.
  4. VII. Химическая кинетика и равновесие
  5. Аварийная связь в Нью-Йорке
  6. Анатомическое строение верхней и нижней челюсти. Общие черты и различия в их развитии и строении.
  7. Атмосфера: состав, строение, значение для географической оболочки
  8. Атомно-кристаллическое строение металлов. Элементарные кристаллические ячейки.
  9. Бактериоцины: химическая природа и свойства; значение для бактерий; практическое использование бактериоциногенных штаммов
  10. Белки, строение, структура, их роль в организме.

В кристаллических комплексных соединениях с заряженными комплексами связь между комплексом и внешнесферными ионами ионная, связи между остальными частицами внешней сферы – межмолекулярные (в том числе и водородные). В молекулярных комплексных соединениях связь между комплексами межмолекулярная.

В большинстве комплексных частиц между центральным атомом и лигандами связи ковалентные. Все они или их часть образованы по донорно-акцепторному механизму (как следствие – с изменением формальных зарядов). В наименее прочных комплексах (например, в аквакомплексах щелочных и щелочноземельных элементов, а также аммония) лиганды удерживаются электростатическим притяжением. Связь в комплексных частицах часто называют донорно-акцепторной или координационной связью.

Рассмотрим ее образование на примере аквакатиона железа(II). Этот ион образуется по реакции:

FeCl2кр + 6H2O = [Fe(H2O)6]2 + 2Cl

Электронная формула атома железа – 1 s 22 s 22 p 63 s 23 p 64 s 23 d 6. Составим схему валентных подуровней этого атома:

При образовании двухзарядного иона атом железа теряет два 4 s -электрона:

Ион железа акцептирует шесть электронных пар атомов кислорода шести молекул воды на свободные валентные орбитали:

Образуется комплексный катион, химическое строение которого можно выразить одной из следующих формул:

Пространственное строение этой частицы выражается одной из пространственных формул:

Форма координационного полиэдра – октаэдр. Все связи Fe-O одинаковые. Предполагается sp 3 d 2-гибридизация АО атома железа. Магнитные свойства комплекса указывают на наличие неспаренных электронов.

Если FeCl2 растворять в растворе, содержащем цианид-ионы, то протекает реакция

FeCl2кр + 6CN = [Fe(CN)6]4 + 2Cl .

Тот же комплекс получается и при добавлении к раствору FeCl2 раствора цианида калия KCN:

[Fe(H2O)6]2 + 6CN = [Fe(CN)6]4 + 6H2O.

Это говорит о том, что цианидный комплекс прочнее аквакомплекса. Кроме того магнитные свойства цианидного комплекса указывают на отсутствие неспаренных электронов у атома железа. Все это связано с несколько иным электронным строением этого комплекса:

Более " сильные" лиганды CN образуют более прочные связи с атомом железа, выигрыша в энергии хватает на то, чтобы " нарушить" правило Хунда и освободить 3 d -орбитали для неподеленных пар лигандов. Пространственное строение цианидного комплекса такое же, как и аквакомплекса, но тип гибридизации другой – d 2 sp 3.

" Сила" лиганда зависит прежде всего от электронной плотности облака неподеленной пары электронов, то есть, она увеличивается с уменьшением размера атома, с уменьшением главного квантового числа, зависит от типа гибридизации ЭО и от некоторых других факторов. Важнейшие лиганды можно выстроить в ряд по возрастанию их " силы" (своеобразный " ряд активности" лигандов), этот ряд называется спектрохимическим рядом лигандов:

I ; Br ;:SCN , Cl , F , OH , H2O;:NCS , NH3; SO3S:2 ;:CN , CO

Для комплексов [Fe(H2O)6]3 и [Fe(CN)6]3 схемы образования выглядят следующим образом:

Для комплексов с КЧ = 4 возможны две структуры: тетраэдр (в случае sp3 -гибридизации), например, [Zn(H2O)4]2 , и плоский квадрат (в случае dsp 2-гибридизации), например, [Cu(NH3)4]2 .

 




Дата добавления: 2014-12-15; просмотров: 32 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав