Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Читайте также:
  1. I. Основные свойства живого. Биология клетки (цитология).
  2. I. ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА МИОКАРДА
  3. Актуальность и проблематика детектирования NO, продуцируемого в организме. Спектральные свойства NO, требуемые аналитические параметры и выбор аналитического диапазона.
  4. Алгоритм и его свойства
  5. Алгоритм и требования к алгоритму (свойства алгоритма )
  6. Алгоритм. Свойства алгоритма. Способы записи алгоритма
  7. Алгоритмы и их свойства. Представление алгоритмов
  8. Алгоритмы и их свойства. Представление алгоритмов
  9. Анаэробы отличаются от аэробов многими свойствами. Укажите, какое из ниже перечисленных свойств характерно для них
  10. Ассортимент растительных масел, их свойства, особенности состава.

отбора образцов (проб)

 

от «___»___________2014_г.

Время отбора__________

 

Наименование и адрес заявителя:_________________________________________________

_____________________________________________________________________________
Наименование и адрес изготовителя: _____________________________________________

 

 

Наименование вида продукции:__________________________________________________

 

 

Место отбора проб: ____________________________________________________________

_____________________________________________________________________________

Единица измерений:__________________________________

Размер партии:_______________________________________

Результат наружного осмотра партии: ____________________________________________

(состояние упаковки, маркировка)

Дата выработки:_______________________________________________________________

Проба (образец) отобраны в соответствии с ГОСТ:__________________________________

Количество отобранных образцов:________________________________________________

(масса, упаковочные единицы)

(для испытаний:___________________; для контрольных образцов___________________)

Цель отбора: испытание продукции по показателям безопасности в соответствии с требованиями СанПиН, НТД, в рамках производственного контроля, другое ____________

 

 

Подписи осуществляющих отбор или присутствующих при отборе:

Наименование организации Подпись Ф. И. О., должность
     
     
     

 

Унифицированная форма № ТОРГ-12

Утверждена постановлением Госкомстата

России от 25.12.98 № 132

 

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Все материалы в той или иной степени проводят электрический ток, т.е. имеют электропроводность. По этому признаку материалы подразделяются на проводники, полупроводники, диэлектрики.

Способность и возможность материала проводить электрический ток главным образом обусловлена: типом химической связи; шириной запрещенной зоны; видом свободных носителей заряда, их концентрацией и подвижностью.

Основными параметрами, характеризующими электрические свойства, являются: удельная электропроводность g (Ом-1 · м-1); удельное электросопротивление ρ (Ом · м); температурный коэффициент удельного электросопротивления aρ , или ТКС (К-1).

Удельная электропроводность g связывает плотность тока j (А/м2) и напряженность электрического поля Е (В/м), вызывающего этот ток, соотношением j = g E (дифференциальная форма закона Ома).

Удельное электросопротивление — величина, обратная удельной электропроводности: ρ = 1/g.

Для тела с постоянным поперечным сечением S, сопротивлением R и длиной l ρ определяется по формуле

ρ = RS/l.

Согласно теории электропроводности, g может быть выражена следующей формулой:

g = q2nl/(m v),

где q и т — соответственно заряд и масса носителя заряда (электрона в проводниках, электрона и дырки в полупроводниках, иона в диэлектриках); v и l — скорость и длина свободного пробега носителя заряда; п — концентрация носителей заряда, т.е. их количество в единице объема.

Изменение удельной электропроводности, а следовательно, и удельного электросопротивления в реальных материалах связано с изменением концентрации и длины свободного пробега носителей заряда.

Под действием электрического поля носители заряда приобретают ускорение, а их скорость пропорциональна напряженности поля:

v = иЕ,

где и2 /В·с) — подвижность носителей заряда — отношение скорости их направленного движения, вызванного электрическим полем, к напряженности этого поля. Она определяется выражением

и = ql/(mv),

откуда

g = qnu.

Величина электропроводности сильно зависит от рассеяния носителей на несовершенствах кристаллической решетки — структурных дефектах и фононах. В результате рассеяния уменьшаются длина свободного пробега, скорость и подвижность носителей заряда.

Электроны в изолированном атоме имеют строго определенные дискретные значения энергии. В твердом теле из-за сближения атомов и сильного взаимодействия электронов и ядер происходит расщепление энергетических уровней атомов и объединение их в энергетические зоны (рис. 4.1).

Энергетическая зона, образовавшаяся при расщеплении уровней валентных электронов, называется валентной зоной (Еv). Следующая за ней зона разрешенных энергий — зона проводимости (Ec). Между ними расположена запрещенная зона (Eg). Если электрон получает энергию, превышающую ширину запрещенной зоны, то он переходит из валентной зоны в зону проводимости и участвует в электропроводности.

В соответствии с зонной теорией твердые тела подразделяются на проводники, полупроводники и диэлектрики.

Проводники — материалы, у которых валентная зона и зона проводимости перекрываются или примыкают друг к другу, поэтому электроны в металле свободны, т.е. могут переходить из валентной зоны в зону проводимости при приложении незначительной напряженности электрического поля. Атомы в металлах связаны друг с другом металлической связью. Валентные электроны имеют высокую подвижность и из-за перекрытия Еv, и Ес легко перемещаются в решетке металлического кристалла.

В металлах наблюдается электронный тип электропроводности. При этом ускоренные полем электроны переносят только заряд. Переноса массы, как, например, в материалах, имеющих ионный тип электропроводности, не происходит.

 

Рис. 4.1. Энергетические зоны в твердом теле

 

Диапазон значений ρ металлических проводников занимает три порядка: от 1,58·10-8 Ом·м у серебра до 1000·10-8 Ом·м у сплавов системы Fe—Cr—A1.

Полупроводники по электрическим свойствам занимают промежуточное положение между проводниками и диэлектриками: их удельное электросопротивление составляет 10-6 —109 Ом·м, ширина запрещенной зоны — от 0,05 до 2,5—3 эВ (энергия теплового движения при комнатной температуре kT ~ 0,03 эВ). Атомы в полупроводниках могут быть связаны как ковалентной неполярной и полярной, а также ионной связью; тип электропроводности — электронно-дырочный.

Так же как и диэлектрики, полупроводники имеют отрицательный температурный коэффициент сопротивления (ТКС) aρ, т.е. с ростом температуры ρ полупроводников уменьшается, тогда как ρ металлов увеличивается.

Важной особенностью полупроводников является высокая чувствительность удельного электросопротивления не только к тепловым, но и к другим внешним воздействиям (электромагнитным полям, излучению, давлению и т. д.). Это обусловлено типом химической связи между атомами в кристаллической решетке полупроводника, а также наличием примесей и других дефектов, даже ничтожные концентрации которых существенно влияют на концентрацию свободных носителей заряда и, следовательно, на электрические свойства материала.

В промышленности применяются полупроводники, имеющие и электронный и дырочный типы электропроводности.

У диэлектриков ширина запрещенной зоны превышает 3 эВ, удельное электросопротивление составляет 109—1016 Ом·м. Так же как и в полупроводниках, в диэлектриках может осуществляться ковалентный тип связи. Особенностью электропроводности твердых диэлектриков является в большинстве случаев ее ионный характер. Так как Eg >> kT, лишь очень незначительное количество электронов может оторваться от своих атомов под действием тепловой энергии, и их вклад в электропроводность пренебрежимо мал. Ионная электропроводность может быть обусловлена передвижением как ионов примесей, так и ионов самого диэлектрика.

Следует отметить, что электронный тип проводимости может быть ощутимым в том случае, если в запрещенной зоне вблизи дна зоны проводимости и потолка валентной зоны образуется большое число соответственно донорных и акцепторных уровней. Появление таких уровней может быть вызвано наличием примеси и дефектов кристаллической решетки.

Электронная электропроводность, обусловленная наличием свободных электронов, проявляется в сильных электрических полях и приводит к пробою изоляции. При электронной электропроводности переноса вещества не происходит, в то время как при ионной это явление наблюдается.

 




Дата добавления: 2014-12-15; просмотров: 93 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Задание №2. Установление градации качества продовольственных товаров.| Негосударственное образовательное учреждение

lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав