Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Изображение параллельных прямых на чертеже с числовыми отметками.

Читайте также:
  1. IBM получила первое в мире изображение отдельных связей между атомами углерода
  2. Quot;Изображение человека, который, испытав тщетность усилий
  3. Взаимное расположение двух прямых на плоскости.Рассмотрим две прямые, задаваемы уравнениями и .
  4. Выполнение рабочих чертежей деталей
  5. Выполнение чертежей лестниц
  6. Выполнение чертежей разрезов
  7. Государственная поддержка прямых инвестиций.
  8. Готовое изображение
  9. Графическое изображение алгоритма (язык блок-схем)
  10. Графическое изображение вариационных рядов

Если плоскости параллельны друг другу, то масштабы их уклонов взаимно параллельны, интервалы одинаковы и возрастают в одну и ту же сторону (см. рисунок, 49).

Рис.49. Параллельные плоскости на чертеже

с числовыми отметками.

 

19. ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПЛОСКОСТЕЙ ОБЩЕГО ПОЛОЖЕНИЯ.

Две любые, не совпадающие и не параллельные между собой плоскости пересекаются по прямой линии.

Задача. Построить линию пересечения плоскостей α (АВС) и β (а, в).

Решение. Для построения искомой прямой линии достаточно определить любые две точки общие для заданных плоскостей.

Каждая из упомянутых точек определяется в три этапа.

1. Рассечём обе заданные плоскости какой-либо вспомогательной плоскостью. В нашем случае взята фронтально проецирующая плоскость γ. Она взята таким образом, чтобы прямая «а» плоскости бета ей принадлежала. Одновременно, эта плоскость пересекается со второй заданной плоскостью в точках 1 и 2.

2. Строим проекции линий, по которым плоскость γ пересечёт заданные плоскости. В нашем случае это линии «а» и 1-2.

3. Определим точку Е, в которой эти линии пересекаются. Эта точка принадлежит обеим заданным плоскостям, а значит и искомой линии их взаимного пересечения.

4. Вторая точка Н линии пересечения заданных плоскостей ЕН определяется подобным способом с помощью второй дополнительной плоскости, ω.

Исходный чертёж. Решение.

Рис.50. Построение линии пересечения плоскостей.

Следует отметить, что вспомогательная плоскость может иметь различное положение в пространстве, но должна быть перпендикулярна одной из плоскостей проекций.


Дата добавления: 2014-12-18; просмотров: 11 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав