Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Понятие и достоинства подхода объектно-ориентированного программирования.

Читайте также:
  1. I . Понятие и признаки правовых норм.
  2. I. Диагностика: понятие, цели, задачи, требования, параметры
  3. I. Доказывание, понятие и общая характеристика
  4. I. Понятие законности. Соотношение законности, права и власти.
  5. I. Понятие законности. Соотношение законности, права и власти.
  6. I. Понятие и виды источников (форм) права.
  7. I. Понятие и виды преступности
  8. I. Понятие и сущность бюджетирования.
  9. I. Понятие как форма мышления
  10. I. Понятие, признаки и предпосылки правовых отношений.

Объе́ктно-ориенти́рованное, или объектное, программи́рование (в дальнейшем ООП) — парадигма программирования, в которой основными концепциями являются понятия объектов и классов. В случае языков с прототипированием вместо классов используются объекты-прототипы.

Абстрагирование — это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция — это набор всех таких характеристик.

Инкапсуляция — это свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе и скрыть детали реализации от пользователя.

Наследование — это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс — потомком, наследником или производным классом.

Сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса или копирования прототипа (например, после запуска результатов компиляции и связывания исходного кода на выполнение).

Полиморфизм — это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Прототип — это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка.

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонент и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование состоит в описании структуры и поведения проектируемой системы, то есть, фактически, в ответе на два основных вопроса:

· Из каких частей состоит система.

· В чём состоит ответственность каждой из частей.

Выделение частей производится таким образом, чтобы каждая имела минимальный по объёму и точно определённый набор выполняемых функций (обязанностей), и при этом взаимодействовала с другими частями как можно меньше.

Большое значение имеет правильное построение иерархии классов. Одна из известных проблем больших систем, построенных по ООП-технологии — так называемая проблема хрупкости базового класса. Она состоит в том, что на поздних этапах разработки, когда иерархия классов построена и на её основе разработано большое количество кода, оказывается трудно или даже невозможно внести какие-либо изменения в код базовых классов иерархии (от которых порождены все или многие работающие в системе классы). Даже если вносимые изменения не затронут интерфейс базового класса, изменение его поведения может непредсказуемым образом отразиться на классах-потомках.

Причины, приводящие к снижению производительности программ из-за использования объектно-ориентированных средств:

Динамическое связывание методов.

Обеспечение полиморфного поведения объектов приводит к необходимости связывать методы, вызываемые программой (то есть определять, какой конкретно метод будет вызываться) не на этапе компиляции, а в процессе исполнения программы, на что тратится дополнительное время. При этом реально динамическое связывание требуется не более чем для 20 % вызовов, но некоторые ООП-языки используют его постоянно.

Значительная глубина абстракции.

ООП-разработка часто приводит к созданию «многослойных» приложений, где выполнение объектом требуемого действия сводится к множеству обращений к объектам более низкого уровня. В таком приложении происходит очень много вызовов методов и возвратов из методов, что, естественно, сказывается на производительности.

Наследование «размывает» код.

Код, относящийся к «оконечным» классам иерархии наследования (которые обычно и используются программой непосредственно) — находится не только в самих этих классах, но и в их классах-предках. Относящиеся к одному классу методы фактически описываются в разных классах. Это приводит к двум неприятным моментам:

· Снижается скорость трансляции, так как компоновщику приходится подгружать описания всех классов иерархии.

· Снижается производительность программы в системе со страничной памятью — поскольку методы одного класса физически находятся в разных местах кода, далеко друг от друга, при работе фрагментов программы, активно обращающихся к унаследованным методам, система вынуждена производить частые переключения страниц.

Инкапсуляция снижает скорость доступа к данным.

Запрет на прямой доступ к полям класса извне приводит к необходимости создания и использования методов доступа. И написание, и компиляция, и исполнение методов доступа сопряжено с дополнительными расходами.

Динамическое создание и уничтожение объектов.

Динамически создаваемые объекты, как правило, размещаются в куче, что менее эффективно, чем размещение их на стеке и, тем более, статическое выделение памяти под них на этапе компиляции.

Несмотря на отмеченные недостатки, Буч утверждает, что выгоды от использования ООП более весомы. Кроме того, повышение производительности за счёт лучшей организации ООП-кода, по его словам, в некоторых случаях компенсирует дополнительные накладные расходы на организацию функционирования программы. Можно также заметить, что многие эффекты снижения производительности могут сглаживаться или даже полностью устраняться за счёт качественной оптимизации кода компилятором. Например, упомянутое выше снижение скорости доступа к полям класса из-за использования методов доступа устраняется, если компилятор вместо вызова метода доступа использует инлайн-подстановку (современные компиляторы делают это вполне уверенно).

Понятие блока в современных языках программирования. Формальные параметры и фактические значения параметров блока. 19. Понятие процедуры в современных языках программирования. Формальные параметры и фактические значения параметров процедур. Возможны ли процедуры без параметров? 20. Понятие функции в современных языках программирования. Формальные параметры и фактические значения параметров функции. Отличие функции от процедуры – в структуре и по содержанию.

Очевидно, что встроенных процедур и функций для решения большинства прикладных задач недостаточно, поэтому приходиться придумывать собственные процедуры и функции. По своей структуре они очень напоминают программу и состоят из заголовка и блока. Заголовок процедуры состоит из зарезервированного слова procedure, имени процедуры и необязательного заключенного в круглые скобки списка формальных параметров. Имя процедуры — это идентификатор, уникальный в пределах программы. Формальные параметры — это данные, которые вы передаете в процедуру для обработки, и данные, которые процедура возвращает (подробно параметры описаны ниже). Если процедура не получает данных извне и ничего не возвращает, формальные параметры (в том числе круглые скобки) не записываются. Тело процедуры представляет собой локальный блок, по структуре аналогичный программе:

procedure <имя процедуры> (<список формальных параметров >); const...; type...; var...; begin <операторы> end;

Описания констант, типов данных и переменных действительны только в пределах данной процедуры. В теле процедуры можно использовать любые глобальные константы и переменные, а также вызывать любые подпрограммы (процедуры и функции).

Вызов процедуры для выполнения осуществляется по ее имени, за которым в круглых скобках следует список фактических параметров, т.е. передаваемых в процедуру данных:

<имя процедуры> (<список фактических параметров >);

Если процедура не принимает данных, то список фактических параметров (в том числе круглые скобки) не указываются.

Понятие процедуры является чрезвычайно важным, так как именно оно лежит в основе одной из самых популярных технологий решения задач на языке Delphi. Технология эта внешне проста: задача разбивается на несколько логически обособленных подзадач и решение каждой из них оформляется в виде отдельной процедуры. Любая процедура может содержать в себе другие процедуры, их количество ограничено только объемом памяти вашего компьютера.

Приведем пример небольшой программы, использующей процедуру Power для вычисления числа X в степени Y. Результат вычисления процедура Power заносит в глобальную переменную Z.

program Console;   {$APPTYPE CONSOLE}   uses SysUtils;   var Z: Double;   procedure Power(X, Y: Double); // X и Y - формальные параметры begin Z:= Exp(Y * Ln(X)); end;   begin Power(2, 3); // 2 и 3 - фактические параметры Writeln('2 в степени 3 = ', Z); Writeln('Press Enter to exit...'); Readln; end.

 

Функции программиста применяются в тех случаях, когда надо создать подпрограмму, участвующую в выражении как операнд. Как и процедура, функция состоит из заголовка и блока. Заголовок функции состоит из зарезервированного слова function, имени функции, необязательного заключенного в круглые скобки списка формальных параметров и типа возвращаемого функцией значения. Функции возвращают значения любых типов данных кроме Text и file of (см. файлы). Тело функции представляет собой локальный блок, по структуре аналогичный программе.

function <имя функции> (<список формальных параметров >): <тип результата>; const...; type...; var...; begin <операторы> end;

В теле функции должен находиться по крайней мере один оператор, присваивающий значение имени функции или неявной локальной переменной Result. Если таких присваиваний несколько, то результатом функции будет значение последнего из этих операторов. Преимущество от использования переменной Result состоит в том, что она может участвовать в выражениях как операнд.

В качестве примера заменим явно неуклюжую процедуру Power (см. выше) на функцию с таким же именем:

program Console;   {$APPTYPE CONSOLE}   uses SysUtils;   function Power(X, Y: Double): Double; // X и Y - формальные параметры begin Result:= Exp(Y * Ln(X)); end;   begin Writeln('2 в степени 3 = ', Power(2, 3)); // 2 и 3 - фактические параметры Writeln('Press Enter to exit...'); Readln; end.

Параметры служат для передачи исходных данных в подпрограммы и для приема результатов работы этих подпрограмм.

Исходные данные передаются в подпрограмму с помощью входных параметров, а результаты работы подпрограммы возвращаются через выходные параметры. Параметры могут быть входными и выходными одновременно.

Входные параметры объявляются с помощью ключевого слова const; их значения не могут быть изменены внутри подпрограммы:

function Min(const A, B: Integer): Integer; begin if A < B then Result:= A else Result:= B; end;

Для объявления выходных параметров служит ключевое слово out:

procedure GetScreenResolution(out Width, Height: Integer); begin Width:= GetScreenWidth; Height:= GetScreenHeight; end;

Установка значений выходных параметров внутри подпрограммы приводит к установке значений переменных, переданных в качестве аргументов:

var W, H: Integer; begin GetScreenResolution(W, H); ... end;

После вызова процедуры GetScreenResolution переменные W и H будут содержать значения, которые были присвоены формальным параметрам Width и Height соответственно.

Если параметр является одновременно и входным, и выходным, то он описывается с ключевым словом var:

procedure Exchange(var A, B: Integer); var C: Integer; begin C:= A; A:= B; B:= C; end;

Изменение значений var -параметров внутри подпрограммы приводит к изменению значений переменных, переданных в качестве аргументов:

var X, Y: Integer; begin X:= 5; Y:= 10; ... Exchange(X, Y); // Теперь X = 10, Y = 5 ... end;

При вызове подпрограмм на место out - и var -параметров можно подставлять только переменные, но не константы и не выражения.

Если при описании параметра не указано ни одно из ключевых слов const, out, или var, то параметр считается входным, его можно изменять, но все изменения не влияют на фактический аргумент, поскольку они выполняются с копией аргумента, создаваемой на время работы подпрограммы. При вызове подпрограммы на месте такого параметра можно использовать константы и выражения. Пример подпрограммы:

function NumberOfSetBits(A: Cardinal): Byte; begin Result:= 0; while A <> 0 do begin Result:= Result + (A mod 2); A:= A div 2; end; end;

Параметр A в приведенной функции является входным, но при этом он используется в качестве локальной переменной для хранения промежуточных данных.

Разные способы передачи параметров (const, out, var и без них) можно совмещать в одной подпрограмме. В следующем законченном примере процедура Average принимает четыре параметра. Первые два (X и Y) являются входными и служат для передачи исходных данных. Вторые два параметра являются выходными и служат для приема в вызывающей программе результатов вычисления среднего арифметического (M) и среднего геометрического (P) от значений X и Y:

program Console;   {$APPTYPE CONSOLE}   uses SysUtils;   procedure Average(const X, Y: Double; out M, P: Double); begin M:= (X + Y) / 2; P:= Sqrt(X * Y); end;   var M, P: Double;   begin Average(10, 20, M, P); Writeln('Среднее арифметическое = ', M); Writeln('Среднее геометрическое = ', P); Writeln('Press Enter to exit...'); Readln; end.

Существует разновидность параметров без типа. Они называются нетипизированными и предназначены для передачи и для приема данных любого типа. Нетипизированные параметры описываются с помощью ключевых слов const и var, при этом тип данных опускается:

procedure JustProc(const X; var Y; out Z);

Внутри подпрограммы тип таких параметров не известен, поэтому программист должен сам позаботиться о правильной интерпретации переданных данных. Заметим, что при вызове подпрограмм на место нетипизированных параметров (в том числе и на место нетипизированных const-параметров) можно подставлять только переменные.

Передача фактических аргументов в подпрограмму осуществляется через специальную область памяти — стек. В стек помещается либо значение передаваемого аргумента (передача значения), либо адрес аргумента (передача ссылки на значение). Конкретный способ передачи выбирается компилятором в зависимости от того, как объявлен параметр в заголовке подпрограммы. Связь между объявлением параметра и способом его передачи поясняет таблица 2.10:

Ключевое слово Назначение Способ передачи
<отсутствует> Входной Передается копия значения
const Входной Передается копия значения либо ссылка на значение в зависимости от типа данных
out Выходной Передается ссылка на значение
var Входной и выходной Передается ссылка на значение

Таблица 2.10. Способы передачи параметров

Если передается значение, то подпрограмма манипулирует копией аргумента. Если передается ссылка на значение, то подпрограмма манипулирует непосредственно аргументом, обращаясь к нему через переданный адрес.

В языке Delphi существует возможность задать параметрам процедур и функций стандартные значения. Они указываются через знак равенства после типа параметра. Например, опишем процедуру, которая заполняет некоторую область памяти заданным значением:

procedure Initialize(var X; MemSize: Integer; InitValue: Byte = 0);

Для параметра InitValue задано стандартное значение, поэтому его можно опустить при вызове процедуры Initialize:

Initialize(MyVar, 10); // Эквивалентно Initialize(MyVar, 10, 0);

Подпрограмма может содержать любое количество параметров со стандартными значениями, однако такие параметры должны быть последними в списке. Другими словами, после параметра со стандартным значением не может следовать обычный параметр, поэтому следующее описание будет воспринято компилятором как ошибочное:

procedure Initialize(var X; InitValue: Byte = 0; MemSize: Integer); // Ошибка!

Что такое событийное программирование? Понятие события и его роль в современном программировании. 22. События в Делфи программах, их назначения, средства реализации, примеры разнообразных событий.




Дата добавления: 2014-12-19; просмотров: 33 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав