Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Технологии изготовления матриц.

Читайте также:
  1. CALS-технологии. Предпосылки
  2. CASE-технологии и их использование
  3. CASE-технологии и их использование
  4. III. Образовательные технологии
  5. OLAP-технологии анализа и прогнозирования деловой ситуации
  6. Pr технологии в коммерческих структурах
  7. PR-технологии в политике
  8. Social Media Marketing (SMM) и технологии
  9. V этап (с середины 80-х гг.) - компьютерные (новые) технологии
  10. V. Образовательные технологии

Жидкокристаллическая матрица TN+film состоит из следующих элементов:

⁃лампа подсветки из ртути;

⁃система отражателей для равномерной подсветки;

⁃стеклянная подложка с контактами;

⁃фильтры‐поляризаторы;

⁃жидкие кристаллы

Пиксель в жидкокристаллической матрице формируется из 3 ячеек или точек синего, красного и зелёного цветов. Включая и выключая эти точки, комбинируя эти состояния, получают тот или иной цвет. Управление матрицей происходит по‐пиксельно. Здесь кроется большой недостаток данных пассивных матриц: пока сигнал дойдёт до последних пикселей, яркость первых, вследствие потери заряда уменьшится. Да и строить матрицы с большой диагональю по подобной технологии также нецелесообразно. Потребуется увеличить напряжение, что приведёт к росту помех.

Для преодоления этих препятствий была разработана технология TFT(Thin Film Transistor) или тонкоплёночный транзистор. Поскольку транзистор это активный элемент, соответственно, матрицы стали активными. Применение таких транзисторов позволило управлять каждым пикселом отдельно, что позволило значительно увеличить время реакции и производить жидкокристаллические матрицы больших размеров.

В каждой ячейке того или иного цвета, входящей в состав пикселя, расположены молекулы жидких кристаллов. В технологии TN+film они выстроены друг за другом, но развёрнуты относительно друг друга по‐спирали таким образом, что крайние молекулы развёрнуты относительно друг друга на 90 градусов. Данные молекулы расположены в специальных бороздках, которые и создают такое расположение на стеклянной подложке.

К концам данной спирали подсоединены электроды, к которым подаётся напряжение, управляющее пикселом. В ответ на это, в зависимости от напряжения, спираль начинает сжиматься. Таким образом при отсутствии напряжения свет проходит через первый фильтр‐поляризатор, затем молекулы жидкого кристалла разворачивают свет на 90 градусов, чтобы он был в одной плоскости со 2 фильтром и прошёл сквозь него. Таким образом получаем белый пиксель.

Если будет подано максимальное напряжение, молекулы кристалла займут такое положение, при котором свет будет поглощён полностью вторым фильтром‐поляризатором. Соответственно пиксель окрасится в чёрный цвет. При вариациях поданного напряжения, свет будет частично поглащаться поляризатором из‐за расположения кристаллов. Пиксель будет окрашен в серые оттенки, что означает свет будет частью проходить, а частью поглощаться.

Поскольку матрица, изготовленная по этой технологии обладают малыми углами обзора, применили специальную плёнку, накладываемую сверху и раширяющую обзор. Получилась технология TN+film, у которой при смене угла обзора интенсивность цвета меняется не так резко. Данная технология применяется и сейчас, поскольку она самая дешёвая. Но для работы с графикой она не подходит.

Плюсы технологии TN+film:

⁃высокое быстродействие матрицы;

⁃низкая стоимость;

Недостатки технологии:

⁃малые углы обзора;

⁃малая контрастность;

⁃качество цветопередачи;

Технология S‐IPS основана на тех же принципах, отличие состоит в том, что молекулы выстраиваются друг за другом параллельно, а не скручиваясь в спираль, как в технологии TN+film. Электроды расположены на нижней подложке. При отсутствии напряжения свет не проходит через 2 поляризационный фильтр, плоскость поляризации которого расположена под углом 90 градусов. Таким образом получается насыщенный чёрный цвет. Углы обзора матриц, выполненных по этой технологии, составляют до 170 градусов по горизонтали и вертикали, что очень выгодно отличает данные мониторы от предыдущих.

Плюсы технологии S‐IPS:

⁃большие углы обзора по горизонтали и вертикали;

⁃высокая контрастность;

Недостатки технологии;

⁃большое время отклика, так как надо развернуть молекулы на больший угол;

⁃более мощные лампы для подсветки панели;

⁃необходимы более мощные напряжения для разворота молекул, так как электроды в одной плоскости;

⁃высокая стоимость;

Исходя из характеристик матриц, выполненных по данной технологии, применять их лучше всего в дизайнерских задачах, там где не требуется высокое быстродействие динамичных сцен, но требуется качественная цветопередача.

Компромиссом между высокой цветопередачей технологии S‐IPS и быстродействием TN+film, стала технология MVA. Суть данной технологии состоит в том, что молекулы распологаются параллельно друг другу, а по отношению ко 2 фильтру по углом 90 градусов. Второй фильтр имеет сложное строение, он состоит из треугольников, к боковым сторонам которым и развёрнуты молекулы кристаллов таким образом. Попадая на второй фильтр через молекулы, свет поляризуется на 90 градусов(работа молекул кристалла) и поглощается 2 фильтром, который такой свет не пропускает. В результате получаем чёрный свет.

Подавая напряжение, молекулы начинают поворачиваться и тем самым направляя свет на 2 фильтр уже под углом, отличным от 90 градусов. В результате свет начинает проходить сквозь 2 фильтр с интенсивностью пропорциональной приложенному напряжению. Данная технология вольно или невольно делит экран на 2 части, по направленности молекул к 2 фильтру, получается то, что находясь по отношению к экрану со стороны, для нас молекулы кристаллов другой стороны не действуют. Мы видим только ту зону, которая ближе к нам и которая цвет не искажает. Применение подобной технологии значительно усложняет строение фильтров‐поляризаторов и самих матриц, так как каждую точку экрана дублируют с 2 зон.

Фирма Samsung не пожелала платить за лицензию и разработала свою технологию PVA, очень похожую на MVA, и имеющую ещё большую контрастность. Поэтому зачастую в характеристиках мониторов указывается MVA/PVA.

Плюсы технологии MVA/PVA:

⁃большие углы обзора;

⁃хорошая цветопередача и контрастность;

Недостатки технологии:

⁃сложность изготоления матрицы;

⁃время отклика больше, чем матриц технологии TN+film

На этом обзор технологий жидкокристаллических матриц завершаем. Что касается сравнительно недавно ананосированной фирмой Samsung технологии PLS(Plane‐to‐Line Switching), то она скорей всего развитие технологии S‐IPS. Во вском случае сторонние эксперты изучив матрицы PLS и S‐IPS под микроскопом, отличий не выявили. Более того Samsung выдвинула иск против LG, в котором утверждала, что используемая LG технология AH‐IPS, является модификацией PLS, что косвенно подтверждает вышесказанное.

Плазменные мониторы в настоящее время получили широкое распространение благодаря тому, что подешевела технология производства. Производятся мониторы с большой диагональю, поскольку производить с малой диагональю технологически затруднительно. Поэтому и цены на них могут быть больше, чем на широкоэкранные.

Матрица плазменного монитора состоит из ячеек, на стенки которой нанесено покрытие из фосфора, а сами ячейки заполнены инертным газом: неоном или ксеноном. При подаче напряжения на ячейку происходит разряд, инертный газ начинает испускать фотоны, которые в свою очередь бомбардируют фосфорное покрытие ячейки. Фосфор в свою очередь начинает испускать фотоны света. Всем известно, как фосфор люминесцирует даже при дневном свете.

Ячейки плазменной матрицы имеют 3 цвета: красный, зелёный, синий, и в таком составе образуют пиксель. Соответственно, подавая напряжения разной интенсивности и комбинируя цвета, получают на данный момент тот цвет, который необходим. Принцип такой же, как и у жидкокристаллических матриц, просто вместо кристаллов используется ячейки с инертным газом. Причём, каждая ячейка пикселя управляется отдельно, что самым лучшим образом сказывается на цветопередаче и контрастности.

В целом экран плазменной матрицы состоит из 2 стёкол, наружного и внутреннего, между которыми располагаются 2 слоя диэлектрика с электродами. Один слой диэлектрика примыкает к внешнему стеклу. В этот диэлектрик встроены питающие электроды или электроды экрана. После слоя диэлектрика идёт тонкий слой оксида магния или защитный слой. А затем сам слой с ячейками инертного газа.

Со стороны внутреннего стекла также есть слой диэлектрика в который встроены электроды, которые называются адресными или управляющими. Таким образом, при подаче напряжения между питающим и адресным электродом и возникает газоразрядный ток, который приводит к испусканию фотонов в отдельной ячейке и всей плазменной панели в целом, согласно необходимому сюжету.

Как видно из этого описания, технология матрицы плазменных мониторов несколько проще, чем жидкокристаллических. Рассмотрим теперь плюсы и минусы данной технологии.

Плюсы:

⁃большие углы обзора;

⁃бесподобное качество цветопередачи и контрастности, насыщенность передаваемого цвета;

⁃абсолютно плоский экран и его малая толщина;

⁃небольшое время регенерации изображения;

У всякой технологии есть какой‐либо предел, поэтому свои недостатки есть и у плазмы:

⁃повышенное энергопотребление, поскольку используется газоразрядный эффект;

⁃большой размер пиксела, что влияет на разрешающую способность картинки с мелкими деталями;

⁃ресурс плазменных панелей ниже, чем жидкокристаллических;

⁃панели с малой диагональю дороже аналогичных жидкокристаллических;

OLED‐матрица состоит из органических светодиодов. Светодиод состоит из катода и анода, между которыми находится органическое вещество. При прохождении электрического тока катод испускает электроны, а анод—положительные ионы. Электрическое поле направляет эти частицы навстречу друг другу и рекомбинируя друг с другом они испускают свет. Анод, выполненный изоксида индия с добавками олова пропускает свет в видимом диапозоне.

Для создания цветных OLED‐дисплеев были подобраны вещества, которые могут излучать свет разной длины волны, и соответственно, цвета. Светодиоды синего, красного и зелёного цвета образуют ячейку матрицы. Данная ячейка управляется путём подачи к ней напряжения. Контроллер матрицы на большой скорости последовательно подаёт управляющее напряжение, как в строчной развёртке электронно‐лучевой трубки. За счёт этого человеческий глаз не успевает почувствовать разницу цвета, когда ячейка получила импульс, а когда он перестал воздействовать на ячейку. Такая OLED‐матрица является пассивной.

Есть и активные OLED‐матрицы, где каждой ячейкой управляет свой транзистор, и все диоды загораются практически одновременно. Такая матрица дороже пассивной, из‐за сложности производства.

Возможности OLED‐технологии удивительны. Так, например, прозрачным можно сделать не только анод, но и катод. В этом случае дисплей будет полностью прозрачным, а на восприятии картинки за счёт яркости свечения светодиодов, это не отразится. Или же вместо подложки из стекла, использовать гибкий материал. В этом случае экран можно сворачивать в трубочку.

Массовое производство OLED‐мониторов пока наблюдать не приходится в связи с большой ценой. Да и производить дисплеи с большими диагоналями трудней. Тем не менее, фирмы не останавливаются в своих оисследованиях. Не так давно фирма Samsung анонсировала монитор с диагональю 55 дюймов, поэтому проблемы, возникающие в технологии изготовления OLED‐матриц преодолеваются.

Рассмотрим достоинства технологии OLED:

⁃углы обзора самые большие по сравнению с другими технологиями;

⁃самая высокая контрастность среди существующих технологий;

⁃время отклика измеряется в микросекундах, а у жидкокристаллических матриц в миллисекундах;

⁃отсутствие лампы подсветки, значит, энергопотребление ниже;

⁃толщина экрана ёщё меньше;

⁃могут использоваться в широком диапозоне температур;

К недостаткам технологии относятся:

⁃время жизни органических светодиодов;

⁃необходимость тщательной герметизации матрицы от влаги;

⁃дороговизна;




Дата добавления: 2014-12-20; просмотров: 34 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав