Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные тенденции развития химической промышленности

Читайте также:
  1. E. закономерности психического развития, протекающего в неблагоприятных условиях, патогенная сила которых превышает компенсаторные возможности индивида
  2. I Кислотно-основные свойства.
  3. I Кислотные и основные свойства
  4. I период развития менеджмента - древний период. Наиболее длительным был первый период развития управления - начиная с 9-7 тыс. лет до н.э. примерно до XVIII в.
  5. I этап развития логопедии (античность – 18 век).
  6. I. Задержка полового развития и неполное половое развитие
  7. I. Из истории развития методики развития речи
  8. I. Обоснование соответствия решаемой проблемы и целей Программы приоритетным задачам социально-экономического развития Российской Федерации
  9. I. Определить основные критерии качества атмосферного воздуха.
  10. I. Основные богословские положения

 

Основные тенденции развития современной химической промышленности связаны, прежде всего, с решением глобальных проблем человечества: 1) продовольственные ресурсы Земли;

2) ресурсы минерального сырья для промышленности;

3) энергетические ресурсы;

4) предотвращение загрязнения биосферы.

Все эти проблемы взаимосвязаны и должны решаться комплексно.

Одной из ведущих тенденций ХТ, в том числе химии УВ и химической переработки углей и сланцев, является создание крупномасштабных производств новых видов химических продуктов и сырья многоцелевого назначения. Такими продуктами являются молекулярный водород, аммиак, гидразин, метанол, которые выполняют роль как химических компонентов, так и вторичных энергоносителей. Особое значение среди этих веществ имеет водород, наиболее чистым и практически неисчерпаемым источником которого является вода.

Во всех развитых странах мира ведется работа по изысканию экономичных способов крупномасштабного производства водорода и созданию водородной технологии. Серьезные перспективы имеет радиационно-химический способ получения водорода из воды, особенно в сочетании с высокотемпературным термолизом. Он ориентирован на комплексное использование излучения и теплоты ядерных реакторов. С задачами водородной энергетики тесно связаны и проблемы эффективного использования солнечной энергии.

Существенно возрастает роль химической энергетики. Ее целями является разработка высокоэффективных способов аккумулирования энергии в энергоемких веществах: водороде и метане, которые легко траспортируются и способны хранить запасенную энергию сколь угодно долго.

Переход на потребление водорода объединит энергетику и химическую технологию, бытовое газоснабжение и металлургию. Энергоснабжение автомобильного и авиационного транспорта и производство синтетических УВ в единую технологическую систему. Ресурсы водорода неограниченны и возобновляемы. При использовании водородной технологии полностью снимаются экологические. Энергетические и сырьевые проблемы.

Атомная энергетика – один из основных мировых источников энергии. Мощность АЭС в России (около 21 млн кВт), которая намного уступает мощности АЭС в США (более 90 млн. кВт), во Франции (45 млн. кВт), в Японии (27 млн. кВт).

Атомная энергетика считается относительно экологически чистой. Так при сжигании органических топлив на ТЭС происходит выброс оксидов азота, серы, углерода, токсичных УВ, золы и пыли, расходуется большое количество кислорода.

Уровень избыточной радиоактивности, создаваемой АЭС меньше, чем вокруг угольных ТЭС. Т.о., с использованием атомной энергетики происходит одновременное решение сразу двух глобальных проблем, т.к. позволяет высвободить значительные количества органического топлива для последующей его комплексной переработки.

В условиях ограничения ресурсов нефти огромное значение приобретает уголь в качестве нового вида сырья для химических и нефтехимических продуктов. В настоящее время проводится работа по созданию и освоению экономичных процессов и способов комплексной переработки углей и других ненефтяных видов горючих ископаемых в облагороженные твердые, жидкие и газообразные виды топлива и химического сырья, по использованию продуктов переработки в энергетике, металлургии, химии и нефтехимии, транспортировке топлива и передаче электрической энергии с целью увеличения ресурсов топлива, химического сырья и энергии.

Одной из важных проблем является широкое использование возобновляемых источников сырья и энергии, особенно биомассы. Около 90 % биомассы биосферы составляет биомасса наземных растений. Остальная часть приходится на водную растительность и гетеротрофные организмы. Общие запасы биомассы на Земле оцениваются в 1836 млрд. т с энергосодержанием 27 500 млрд. ГДж, что эквивалентно 640 млрд. т нефти. Первичным источником биомассы являются деревья, сельскохозяйственные культуры и водные растения. Биомасса по своему составу может быть углеродосодержащей (растительный материал, древесная щепа, опилки, морские водоросли, зерно, бумага, упаковочная тара) или сахаросодержащей (сахарная свекла, сахарный тростник, сорго). Биомасса является крупным возобновляемым источником энергии и может быть использована для получения водорода, газообразных, жидких, твердых углеводородов и химического сырья ежегодный прирост только лесов мира составляет около 50 млрд. т, а продукция всего годового фотосинтеза достигает 57 × 1015 т углерода в год, что в несколько раз превышает потребление энергии человечеством. В последние годы наметились основные пути химической и биохимической трансформации биомассы в топливо и продукты органического синтеза.

Возросшие масштабы деятельности человека становятся сопоставимыми с действием природных процессов, вызывая необратимые нарушения биосферы.

Рациональное использование биосферы и ее охрана от вредных техногенных процессов приобретает все возрастающее значение. Химической технологии принадлежит решающая роль в совершенствовании и разработке новых эффективных способов очистки промышленных выбросов от вредных примесей. Одна из важнейших задач современной технологии – разработка технологических процессов, исключающих вредные выбросы в атмосферу и водоемы. Главным направлением решения экологических проблем является комплексное использование сырья и ускоренное внедрение малоотходных технологических процессов и безотходных производств.

К важнейшим направлениям фундаментальных и прикладных исследований относятся:

♦ новые конструкционные и функциональные органические и неорганические материалы (полимерные, композиционные, керамические и металлические), эластомеры, искусственные и синтетические волокна, а также способы их защиты от коррозии и износа;

♦ химическая безопасность и охрана окружающей среды;

♦ тонкий органический, неорганический и элементоорганический синтез с целью создания новых веществ и материалов;

♦ новые высокоэффективные химико-технологические процессы, включая каталитические, мембранные, металлургические, электрохимические, а также процессы, связанные с применением высоких энергий и физических методов ускорения химических реакций;

♦ новые процессы углубленной и комплексной химической переработки минерального сырья, нефти, газа и твердых горючих ископаемых;

♦ химическая энергетика и создание новых химических источников тока и систем преобразования энергии;

♦ новые методы инструментального химического анализа, химический мониторинг и диагностика химических процессов, свойств материалов и изделий;

♦ химическая информатика.

Для успешного решения задач по ускоренному развитию отраслей химического комплекса, коренному повышению технологического уровня и эксплуатационной надежности химического оборудования требуется опережающее развитие химического машиностроения и, естественно, повышение уровня химико-технологической подготовки инженеров-механиков.

Основной чертой новой технологической идеологии является научный системный подход, рассматривающий в единстве физико-химический, физико-математический, инженерно-технический, экономический, экологический и социальный аспекты организации производства. Такое понимание должно быть нацелено на создание малостадийных (в идеале – одностадийных), надежных, безопасных, малоэнергоемких, высокопроизводительных и экономичных, непрерывных и безотходных, гибких (легко перестраиваемых) по сырью и целевым продуктам производств. Создание таких производств неразрывно связано с изменением подходов к аппаратурному оформлению технологических схем, разработке новейших принципов разделения сред, интенсификации тепло- и массообмена, а также широкому внедрению методов математического моделирования и оптимизации как реакторной части технологической схемы, так и всей схемы в целом.

Одним из условий успешного решения этих задач является постоянное совершенствование химической технологии, начиная с развития ее теоретических основ и кончая разработкой эффективных технологических схем и созданием современного химического машиностроения.

Роль курса "Общая химическая технология" в подготовке инженера химика-технолога.




Дата добавления: 2014-12-20; просмотров: 55 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав