Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Пищевые цепи и трофические уровни

Читайте также:
  1. атрофические изменения в кишечнике
  2. БИЛЕТ 10 Хромосома, ее химический состав. Уровни упаковки ДНК в хромосому. Структурная организация хроматина. 2. Балантидий. Жизненный цикл и медицинское значение.
  3. Билет 13 уровни стратегии.уровни стратегии организации
  4. Билет 4.Уровни стратегии. Три уровня разработки стратегии.
  5. Биотическая структура экосистем. Трофические уровни, пищевые цепи и пищевые сети.
  6. Бытие.Уровни бытия.
  7. Виды и уровни общения
  8. ВОПРОС 18. Понятие малой группы и ее признаки. Классификация малых групп. Уровни развития малой группы.
  9. Вопрос 31. Знание, его уровни и основные методы. Взаимосвязь эмпирического и теоретического уровней знаний и их проявление в управлении.
  10. Вопрос 4.Методы и формы научного познания. Эмпирический и теоретический уровни познания.

 

Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример животное поедает растения. Это животное в свою очередь может быть съедено другим животным, и таким путем может происходить перенос энергии через ряд организмов – каждый последующий питается предыдущим, поставляющим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью, а каждое ее звено – трофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести.

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами. Чаще всего на этом месте находятся растения, грибы, водоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия. В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

Экологические пирамиды - это графические изображения численности, и др структуры между продуцентами, консументами и редуцентами. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел, отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы, характеризующая массу живого вещества, — общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывает изменение первичной продукции (или энергии) на последовательных трофических уровнях.
Пирамида чисел отображает отчетливую закономерность: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается. В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предыдущего доходит лишь 10% энергии) и, в-третьих — обратная зависимость метаболизма oт размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Она четко указывает на количество всего живого вещества на данном трофическом уровне, например, в единицах массы на единицу площади — г/м2 или на объем — г/м3 и т. д.
В наземных экосистемах действует следующее правило пирамиды биомасс: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40—55%, а в отдельных случаях, в полупустынях — 70—75 %.
Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно — она имеет перевернутый (обращенный) вид. Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях у хищников/Хищники живут долго и скорость оборота их генераций мала, но у продуцентов — у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех кон-су ментов.
Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции ( или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем. Пирамида продукции отражает законы расходования энергии в трофических цепях.

№20. Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны. Однако, как показали физические исследования, все взаимодействия можно отнести к четырем видам фундаментальных взаимодействий:
– гравитационному;
– электромагнитному;
– сильному;
– слабому.
Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Оно передается посредством гравитационного поля и определяется фундаментальным законом природы – законом всемирного тяготения, сформулированным И. Ньютоном.
Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при их движении. Изменяющееся магнитное поле порождает переменное электрическое поле, которое в свою очередь является источником переменного магнитного поля.
Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и другими, – и в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля.
Согласно квантовой электродинамике переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой.
Сильное взаимодействие обеспечивает связь нуклонов в ядре. Оно определяется ядерными силами, обладающими зарядовой независимостью, короткодей-ствием, насыщением и другими свойствами. Сильное взаимодействие отвечает за стабильность атомных ядер. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро.
В слабом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы. Слабое взаимодействие проявляется главным образом в процессах бета-распада атомных ядер.
№21. Системы миры: от Аристотеля до Кеплера.
Аристотель – отец всех наук. Основоположник логики, сформулировал её законы, приверженец геоцентрической модели Вселенной, но считал, что землю шарообразная.
Геоцентрическая система мира, существовавшее в древности представление, согласно которому Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг неё.
Движение – врождённое свойство, заставляющее всё на земле стремиться к своему естественному месту.
Мир состоит из двух областей: область земли (земля, огонь, воздух, вода), область неба(эфир). Звёзды состоят из чистого эфира. Вселенная конечна, в конце находятся твердые, прозрачные сферы, на которых неподвижно закреплены звёзды. С крайней внешней сферой соприкасается Бог, он является источником каждого движения.
Принцип Аристотеля: все, что движется приводится в движение другими.
Пифагор. Ввёл понятие иррациональность. Считал, что в основе лежит число, познать мир – значит познать управляющие миром числа.
Архимед. Ввёл понятие центр тяжести.
Эпидокл из Аграганта. Живое произошло из неживого. Вначале произошли органы и части тела, затем они стали беспорядочно соединяться, но наиболее приспособленные организмы выжили.
Френсис Бэкон. Основоположник эмпиризма, метода индукции.
Николай Коперник. Автор гелиоцентрической модели Вселенной. В центре Солнце, земля вращается вокруг солнца по кругу, как и другие планеты.
Джордано Бруно. Был основоположником идеи Коперника, но считал, что во Вселенной много тел, подобных Солнцу и окружающих планет, многие из этих планет обитаемы.
Галилео Галилей. Автор принципа инерции. Принцип инерции противопоставляется принципу Аристотеля.
Принцип инерции: тело находится или в состоянии покоя, или равномерно прямолинейно движется, если на него не производится никакого внешнего воздействия.
Принцип относительности Галилея: все инерциональные системы отсчёта, с точки зрения механики, равноправны.
Иоганн Кеплер. Установил три законы движения планет вокруг солнца.
1 закон. Планеты движутся по эллипсам, в одном из фокусов эллипса находится солнце.
2 закон. Радиус – вектор, проведённый от солнца к планете в равные промежутки времени описывает равные площади.
3 закон. Квадраты периодов обращения планет вокруг солнца относятся, как кубы их больших посуосей.

№17. В 1911 г. Резерфорд предложил свою теорию строения атома:
1) атом состоит из атомного ядра, которое является положительно заряженным;
2) химическая связь между атомами различных элементов — это проявление взаимодействия между двумя внешними электронами соседних атомов.
Несмотря на то что модель Резерфорда была самой современной на то время, она не объяснила главное:
почему один атом после столкновения с атомами других веществ всегда возвращается в свое исходное положение.
Объяснение этого постоянства дал Нильс Бор. Бор применил квантовую гипотезу Планка к модели Резерфорда и доказал, что если атом может изменять свою энергию только прерывно, атом существует лишь в дискретных стационарных состояниях. Низшее из этих состояний и есть нормальное состояние для атома. Теперь в физике было объяснено то, что не смог объяснить Резерфорд.
Теория Бора была подтверждена в многочисленных теориях таких известных мировых ученых, как Франк, Герц, Штерн, Герлах, и ряда других.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).
Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.
Э. Резерфорд экспериментально установил (1899), что соли урана испускают лучи трёх типов, которые по-разному отклоняются в магнитном поле:
• лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами;
• лучи второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц, их назвали β-лучами (существуют, однако, позитронные бета-лучи, отклоняющиеся в противоположную сторону);
• лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением.
Изото́пы— разновидности атомов (и ядер) одного химического элемента с разным количеством нейтронов в ядре.
Изобары-разновидности атомов разных химических элементов,имеющих одинаковое массовое число,но различающихся числом протонов и нейтронов.

№18. Микромир — мир очень малых микрообъектов, размеры которых от 10-10 до 10-18 м, а время жизни может быть до 10-24 с. Испускание и поглощение света происходит порциями, квантами, получившими название фотонов. Это мир — от атомов до элементарных частиц. При этом для микромира свойственен корпускулярно-волновой дуализм, т.е. любой микрообъект обладает как волновыми, так и корпускулярными свойствами. Описание микромира опирается на принцип дополнительности Н. Бора и соотношения неопределенности Гейзенберга. Мир элементарных частиц, которые долго считали элементарными «кирпичиками», подчиняется законам квантовой механики, квантовой электродинамики, квантовой хромоди-намики. Квантовое поле носит дискретный характер.
Макромир — это мир объектов, соизмеримых с человеческим опытом. Размеры макрообъектов измеряются от долей миллиметра до сотен километров, а времена — от секунд до лет. Поведение же макроскопических тел, состоящих из микрочастиц, описывается классической механикой и электродинамикой. Материя может пребывать как в виде вещества, так и в виде поля, причем вещество дискретно, а поле — непрерывно. Скорости распространения поля равны скорости света, максимальной из возможных скоростей, а скорости движения частиц вещества всегда меньше скорости света.
Мегамир — мир объектов космического масштаба: планеты, звезды, галактики, Метагалактика. Кроме них во Вселенной присутствуют материя в виде излучения и диффузная материя. Последняя может занимать огромные пространства в виде гигантских облаков газа и пыли — газо-пылевых туманностей. В звездах сосредоточено 97 % вещества нашей Галактики — Млечный Путь. В других галактиках распределение материи примерно такое же. В Галактике почти все звезды являются двойными, а всего их более 120 млрд. Диаметр Галактики порядка 100 тыс. св. лет; наше Солнце — рядовая звезда типа «желтый карлик», находится на краю утолщенного диска, в 5 пк от края. Но имеются звездные системы, состоящие из 3 — 5 звезд, часто окруженные диффузной материей. Звездные скопления могут состоять из нескольких сотен отдельных звезд, а шаровые скопления — из сотен тысяч. Галактики (их до 10 млрд), наблюдаемые с Земли как туманные пятнышки, имеют разную форму: спиральную, неправильную, эллиптическую. Они образуют скопления из нескольких тысяч отдельных систем. Систему галактик называют Метагалактикой. Мегамир описывается законами классической механики с поправками, которые были внесены теорией относительности.

№28 Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Основными доказательствами этих положений считались:

Диффузия

Броуновское движение

Изменение агрегатных состояний вещества

В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

 




Дата добавления: 2015-02-22; просмотров: 44 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав