Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Экспериментальное получение электромагнитных волн

Читайте также:
  1. Аудиторская проверка должна проводиться таким образом, чтобы результатом ее стало получение объективной и полной информации о деятельности общества.
  2. Билет № 54 Маркетинговая информация: получение и использование.
  3. Виды электромагнитных волн.
  4. Виды электромагнитных полей и их воздействия на организм человека
  5. Воздействие на человека статических электрических и магнитных полей, электромагнитных полей промышленной частоты, электромагнитных полей радиочастот. Электро
  6. Выбор обучающимся темы ВКР и получение задания на ее выполнение.
  7. Диагностикумы, их виды, получение, применение.
  8. Золи и гели. Мицеллы и их строение. Получение коллоидных растворов.
  9. Излучение диполя. Применение электромагнитных волн
  10. К условиям усыновления СК РФ отнесено получение согласия определенного круга лиц

Глава 20. Электромагнитные волны

Существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью,— вытекает из уравнений Максвелла (см. §139). Уравнения Максвелла сформулированы в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Как уже указывалось, решающую роль для утверждения максвелловской теории сыграли опыты Герца (1888), доказавшие, что электрические и магнитные поля действительно распространяются в виде волн, поведение которых полностью описывается уравнениями Максвелла.

Источником электромагнитных волн в действительности может быть любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменное электрическое поле (ток смещения) или соответственно переменное магнитное поле. Однако излучающая способность источника определяется его формой, размерами и частотой колебаний. Чтобы излучение играло заметную роль, необходимо увеличить объем пространства, в котором переменное электромагнитное поле создается. Поэтому для получения электромагнитных волн непригодны закрытые колебательные контуры, так как в них электрическое поле сосредоточено между обкладками конденсатора, а магнитное — внутри катушки индуктивности.

Рис. 225

Герц в своих опытах, уменьшая число витков катушки и площадь пластин конденсатора, а также раздвигая их (рис. 225, а, б), совершил переход от закрытого колебательного контура к открытому колебательному контуру (вибратору Герца), представляющему собой два стержня, разделенных искровым промежутком (рис. 225, в). Если в закрытом колебательном контуре переменное электрическое поле сосредоточено внутри конденсатора (рис. 225, а), то в открытом оно заполняет окружающее контур пространство (рис. 225, в), что существенно повышает интенсивность электромагнитного излучения. Колебания в такой системе поддерживаются за счет источника э. д. с, подключенного к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциалов, до которой первоначально заряжаются обкладки.

Рис. 226

Для возбуждения электромагнитных волн вибратор Герца В подключался к индуктору И (рис.226). Когда напряжение на искровом промежутке достигало пробивного значения, возникала искра, закорачивающая обе половины вибратора, и в нем возникали свободные затухающие колебания. При исчезновении искры контур размыкался и колебания прекращались. Затем индуктор снова заряжал конденсатор, возникала искра и в контуре опять наблюдались колебания и т. д. Для регистрации электромагнитных волн Герц пользовался вторым вибратором, называемым резонатором Р, имеющим такую же частоту собственных колебаний, что и излучающий вибратор, т. е. настроенным в резонанс с вибратором. Когда электромагнитные волны достигали резонатора, то в его зазоре проскакивала электрическая искра.

С помощью описанного вибратора Герц достиг частот порядка 100 МГц и получил волны, длина которых составляла примерно 3 м. П. Н. Лебедев, применяя миниатюрный вибратор из тонких платиновых стерженьков, получил миллиметровые электромагнитные волны с = 6 – 4 мм. Дальнейшее развитие методики эксперимента в этом направлении позволило в 1923 г. советскому физику А. А. Глаголевой-Аркадьевой (1884—1945) сконструировать массовый излучатель, в котором короткие электромагнитные волны, возбуждаемые колебаниями электрических зарядов в атомах и молекулах, генерировались с помощью искр, проскакиваемых между металлическими опилками, взвешенными в масле. Так были получены волны от 50 мм до 80 мкм. Тем самым было доказано существование волн, перекрывающих интервал между радиоволнами и инфракрасным излучением.

Недостатком вибраторов Герца и Лебедева и массового излучателя Глаголевой-Аркадьевой являлось то, что свободные колебания в них быстро затухали и обладали малой мощностью. Для получения незатухающих колебаний необходимо создать автоколебательную систему (см. §146), которая обеспечивала бы подачу энергии с частотой, равной частоте собственных колебаний контура. Поэтому в 20-х годах нашего столетия перешли к генерированию электромагнитных волн с помощью электронных ламп. Ламповые генераторы позволяют получать колебания заданной (практически любой) мощности и синусоидальной формы.

Электромагнитные волны, обладая широким диапазоном частот (или длин волн = c/ , где с — скорость электромагнитных волн в вакууме), отличаются друг от друга по способам их генерации и регистрации, а также по своим свойствам. Поэтому электромагнитные волны делятся на несколько видов: радиоволны, световые волны, рентгеновское и -излучения (табл. 5). Следует отметить, что границы между различными видами электромагнитных волн довольно условны.


Таблица 5

Вид излучения Длина волны, м Частота волны, Гц Источник излучения
Радиоволны 103 — 10-4 3×105 — 3×1012 Колебательный контур Вибратор Герца Массовый излучатель Ламповый генератор
Световые волны:      
Инфракрасное излучение 5×10-4 — 8×10-7 б×1011 — 3,75×1014 Лампы Лазеры
видимый свет 8×10-7 — 4×10-7 3,75×1014 — 7,5×1014  
ультрафиолетовое излучение 4×10-7 — 10-9 7,5×1014 — 3×1017  
Рентгеновское излучение 2×10-9 — 6×10-12 1,5×1017 — 5×1019 Трубки Рентгена
-Излучение < 6×10-12 > 5×1019 Радиоактивный распад Ядерные процессы Космические процессы

 




Дата добавления: 2015-01-30; просмотров: 33 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав