Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Править]Классификация по сфере применения

Читайте также:
  1. GRP, расчет показателя, область применения.
  2. А 45. Выделение денег из государственного бюджета на предупреждение и ликвидацию последствий стихийных бедствий характеризует экономическую деятельность государства в сфере
  3. Автономные группы рабочих и опыт их применения в зарубежной практике.
  4. Административная ответственность в сфере экологопользования
  5. Административная ответственность за нарушения в информационной сфере.
  6. Административная ответственность за правонарушения в таможенной сфере
  7. Административно-восстановительные меры: понятие, виды, основания применения
  8. Акты применения права и пробелы в праве. Пробелы в законодательстве и применение права по аналогии.
  9. Акты применения права: понятие, особенности, виды.
  10. Антибиотики-макролиды для орального применения

Поскольку ИС создаются для удовлетворения информационных потребностей в рамках конкретной предметной области, то каждой предметной области (сфере применения) соответствует свой тип ИС. Перечислять все эти типы не имеет смысла, так как количество предметных областей велико, но можно указать в качестве примера следующие типы ИС:

· Экономическая информационная система — информационная система, предназначенная для выполнения функций управления на предприятии.

· Медицинская информационная система — информационная система, предназначенная для использования в лечебном или лечебно-профилактическом учреждении.

· Географическая информационная система — информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).

[править]Классификация по охвату задач (масштабности)

· Персональная ИС предназначена для решения некоторого круга задач одного человека.

· Групповая ИС ориентирована на коллективное использование информации членами рабочей группы или подразделения.

· Корпоративная ИС в идеале охватывает все информационные процессы целого предприятия, достигая их полной согласованности, безызбыточности и прозрачности. Такие системы иногда называют системами комплексной автоматизации предприятия.

 

4. Выделяют следующие виды информационных технологий:

1. ИТ обработки данных. Необходимы для того, чтобы решить задачи, которые имеют определенные необходимые данные, алгоритмические и другие процедуры их обработки. Данные технологии используются, зачастую, персоналом невысокой квалификации с целью автоматизации постоянно повторяющихся рутинных процессов однообразной деятельности. Они позволяет обрабатывать базы данных, составлять отчеты деятельности и получать ответы на любые запросы деятельности, подтверждая их документально. Основными их компонентами являются сбор, обработка и хранение данных, а также создание отчетов.

2. ИТ управления. Цель данного вида технологий – удовлетворение информационных потребностей каждого профессионального работника, который принимают управленческие решения. Они применяются в среде информационной системы управления и необходимы для обработки данных, которые обрабатываются с помощью специальных информационных средств. Они решают такие функции, как оценка будущего состояния деятельности объекта, оценка отклонений полученного результата от плановых показателей, выявление причин, повлиявших на отклонение, анализ возможных мероприятий. С помощью данных технологий формируются регулярные, специальные, суммирующие, сравнительные и чрезвычайные отчеты.

3. Автоматизация офиса. Призвана дополнять существующую систему коммуникаций персонала, способствует рациональной авторизации управленческого труда и обеспечивают персонал необходимой информацией, поддерживает коммуникационные процессы как внутри компании, так и с внешней средой с помощью компьютерных сетей и других компонентов. К основным компонентам относят базу данных, текстовый процессор, электронную почту и аудиопочту.

 

 

5. По виду задач и по виду процессов обработки информации.

 

6. Современное состояние информационных технологий можно охарактеризовать следующими тенденциями.

1. Наличие большого количества промышленно функционирующих баз данных большого объема, содержащих информацию практически по всем видам деятельности общества.

2. Создание технологий, обеспечивающих интерактивный доступ массового пользователя к этим информационным ресурсам. Технической основой данной тенденции явились государственные и частные системы связи и передачи данных общего назначения и специализированные, объединенные в национальные, региональные и глобальные информационно-вычислительные сети.

3. Расширение функциональных возможностей информационных систем, обеспечивающих параллельную одновременную обработку баз данных с разнообразной структурой данных, мультиобъектных документов, гиперсред, в том числе реализующих технологии создания и ведения гипертекстовых баз данных. Создание локальных, многофункциональных проблемно -ориентированных информационных систем различного назначения на oснове мощных персональных компьютеров и локальных вычислительных сетей.

4. Включение в информационные системы элементов интеллектуализации интерфейса пользователя с системами, экспертных систем, систем машинного перевод автоиндексирования и других технологических средств.

 

7. Растровая, векторная, 3D, фрактальная.
Векторная графика представляет изображение как набор геометрических примитивов. Обычно в качестве них выбираются точки, прямые, окружности, прямоугольники, а также как общий случай, кривые некоторого порядка. Объектам присваиваются некоторые атрибуты, например, толщина линий, цвет заполнения. Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. При воспроизведении перекрывающихся объектов имеет значение их порядок.
Растровая графика всегда оперирует двумерным массивом (матрицей) пикселей. Каждому пикселю сопоставляется значение — яркости, цвета, прозрачности — или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов.

Без особых потерь растровые изображения можно только лишь уменьшать, хотя некоторые детали изображения тогда исчезнут навсегда, что иначе в векторном представлении. Увеличение же растровых изображений оборачивается «красивым» видом на увеличенные квадраты того или иного цвета, которые раньше были пикселями.

В растровом виде представимо любое изображение, однако этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями, потери при редактировании.

Фрактал — объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. С другой стороны, фракталы слабо применимы к изображениям вне этих классов.

Трёхмерная графика (3D — от англ. three dimensions — «три измерения») оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

· матрица поворота

· матрица сдвига

· матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/масштабированный относительно исходного.

8. Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм {dots per inch — dpi) и зависит oj требований к качеству изображения и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

9. Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселем. Размер пикселя варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешения оригинала и масштаба отображения. Мониторы для обработки изображений с диагональю 19-24 дюйма (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1440, 1920x1600, 2048x1536 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22-0,25 мм. Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

 

10. Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм {lines per inch — Ipi) и называeтcя линиатурой. Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра.Такой метод называют растрированием с амплитудной модуляцией (ЛМ).


11. Динамический диапазон. Качество воспроизведения тоновых изображений принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания τ (для оригиналов, рассматриваемых «на просвет», например слайдов) или коэффициенту отражения р (для прочих оригиналов, например полиграфических отпечатков):

D=lg 1/τ = lg 1/ ϸ ϸ= F ϸ/ F0 τ= F τ/ F0

где F0 — падающий световой поток, F ϸ — отраженный световой поток, F τ — пропущенный световой поток.

Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от О до 4. Для поверхностей, отражающих свет, значение динамического диапазона составляет от О до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия.

 

12. Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию. Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.

 

13. Если в растровой графике базовым элементом изображения является точка, то в векторной графике — линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия — элементарный объект векторной графики. Как и любой объект, линия

обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием

(сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения.

Охватываемое ими пространство может быть заполнено другими объектами {текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра.

 

14. Математические основы векторной графики

Рассмотрим подробнее способы представления различных объектов в векторной графике. Точка. Этот объект на плоскости представляется двумя числами (х, г/), указывающими его положение относительно начала координат. Прямая линия. Ей соответствует уравнение у = kx + Ь. Указав параметры k и Ь, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров. Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров — например, координат х1 и х2 начала и конца отрезка. Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

х^2 + а1у^2 + а2ху + а3х + а^4у + a5 = 0.

Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра. Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = х ^3 имеет точку перегиба в начале координат. Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близ­ки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка. В общем случае уравнение кривой третьего порядка можно записать так:

Х^3 +а1у^ 3+ а2 x^2 у + а3 xy^2 + а4 x^2 + а5 y^2 + а6ху + а7х +а8 y+a9 =0

Таким образом, кривая третьего порядка описывается девятью параметрами. Описание ее отрезка потребует на два параметра больше.

 

15. Фрактальная графика, как и векторная, основана на математических вычислениях. Однако базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

 

16.. В упрощенном виде для пространственного моделирования объекта требуется:

• спроектировать и создать виртуальный каркас («скелет») объекта, наиболее

полно соответствующий его реальной форме;

• спроектировать и создать виртуальные материалы, по физическим свойствам

визуализации похожие на реальные;

• присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне — «спроектировать текстуры на объект»);

• настроить физические параметры пространства, в котором будет действовать

объект, — задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

• задать траектории движения объектов;

• рассчитать результирующую последовательность кадров;

• наложить поверхностные эффекты на итоговый анимационный ролик.

 

17. Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS), Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и «гладкость» поверхности в целом. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое, с учетом их взаимодействия на основе заданной физической модели. Деформация объекта обеспечивается перемещением контрольных точек, расположенных вблизи. Каждая контрольная точка связана с близлежащими опорными точками, степень ее влияния на них определяется удаленностью. Другой метод называют сеткой деформации. Вокруг объекта или его части размещается трехмерная сетка, перемещение любой точки которой вызывает упругую деформацию как самой сетки, так и окруженного объекта.

 

18. Еще одним способом построения объектов из примитивов служит твердотельное моделирование. Объекты представлены твердыми телами, которые при взаимодействии с другими телами различными способами (объединение, вычитание, слияние и другие) претерпевают необходимую трансформацию. Например, вычитание из прямоугольного параллелепипеда шара приведет к образованию в параллелепипеде полукруглой лунки.

После формирования «скелета» объекта необходимо покрыть его поверхность материалами. Все многообразие свойств материалов в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства. Для построения поверхностей материалов используют пять основных физических моделей:

• Bouknight — поверхности с диффузным отражением без бликов (например, матовый пластик);

• Phong — поверхности со структурированными микронеровностями (например, металлические);

• ВИпп — поверхности со специальным распределением микронеровностей с учетом взаимных перекрытий (например, глянец);

• Whitted — модель, позволяющая дополнительно учитывать поляризацию света;

• Hall — модель, позволяющая корректировать направления отражения и параметры преломления света. Закраска поверхностей осуществляется методами

Гуро (Gouraud) или Фонга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется поверхности составляющих примитивов и освещение рассчитывается для каждой точки. Следующим этапом является наложение («проектирование») текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект — задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.

 

 

19. В трехмерной графике принято использовать виртуальные эквиваленты физических источников.

• Аналогом равномерного светового фона служит так называемый растворенный свет (Ambient Light), Он не имеет геометрических параметров и характеризуется только цветом и интенсивностью. Пример в природе — естественная освещенность вне видимости Солнца и Луны.

• Удаленный не точечный источник называют удаленным светом {Distant Light). Ему присваиваются конкретные геометрические параметры (координаты). Аналог в природе — Солнце.

• Точечный источник света (Point Light Source) равномерно испускает свет во всех направлениях и также имеет координаты. Аналог в технике — электрическая лампочка.

• Направленный источник света (Direct Light Source) кроме местоположения характеризуется направлением светового потока, углами раствора полного конуса света и его наиболее яркого пятна. Аналог в технике — прожектор.

 

20. Процесс расчета реалистичных изображений называют рендерингом (визуализацией). Большинство современных программ рендеринга основаны методе обратной трассировки лучей (Backway Ray Tracing). Его суть заключается в следующем.

1. Из точки наблюдения сцены посылается в пространство виртуальный луч, по траектории которого должно прийти изображение в точку наблюдения.

2. Для определения параметров приходящего луча все объекты сцены проверяются на пересечение с траекторией наблюдения. Если пересечения не происходит, считается, что луч попал в фон сцены и приходящая информация определяется только параметрами фона. Если траектория пересекается с объектом, то в точке соприкосновения рассчитывается свет, уходящий в точку наблюдения в соответствии с параметрами материала.

3. Сначала просчитывается преломленный и отраженный свет, затем проверяется видимость из точки пересечения всех источников света и интенсивность светового потока. Также вычисляются наличие, резкость и ширина бликов от каждого источника света.

4. Полученные в результате итоговые значения цвета и интенсивности обрабатываются с учетом траектории луча и параметров атмосферы, и присваиваются точке объекта как значения визуализации для наблюдателя. Затем процесс повторяется для всех элементов сцены. С целью упрощения расчетов пересечение проверяют не для каждой точки, а для примитива в целом. Иногда вокруг объекта создают простую виртуальную геометрическую фигуру (параллелепипед, шар), расчет пересечений для объекта выполняют только при пересечении траектории наблюдения с фигурой в целом.

 

21. Программа Softimage 3D компании Microsoft изначально создавалась для рабочих станций SGI и лишь позднее была конвертирована под операционную систему Windows. Программу отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров. Для рендеринга применяется качественный и достаточно быстрый модуль Mental Ray. Существует множество дополнений, выпущенных «третьими» фирмами, значительно расширяющих функции пакета. Эта программа считается стандартом «дефакто» в мире специализированных графических станций SGI, а на платформе IBM PC выглядит несколько тяжеловато и требует мощных аппаратных ресурсов.Наиболее революционной с точки зрения интерфейса и возможностей является программа Maya, разработанная консорциумом известных компаний (Alias Wavefront). Пакет существует в вариантах для разных операционных систем, в том числе и Windows.

3D Studio Мax фирмы Kinetix изначально создавалась для платформы Windows, Этот пакет считается «полупрофессиональным». Однако его средств вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Отличительными особенностями пакета являются поддержка большого числа аппаратных ускорителей трехмерной графики, мощные световые эффекты, большое число дополнений, созданных сторонними фирмами. Сравнительная нетребовательность к аппаратным ресурсам позволяет работать даже на компьютерах среднего уровня. Вместе с тем по средствам моделирования и анимации пакет 3D Studio Мах уступает более развитым программным средствам.

22. В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом «де-факто» и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные «специфические» форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в «стандартный» формат.

TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высокого качества (расширение имени файла.TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата — от монохромного черно-белого до 32-разрядной модели цветоделения CMYK, Начиная с версии 6.0 в формате Tiff можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.

PSD (PhotoShop Document). Собственный формат программы Adobe Photoshop (расширение имени файла.PSD), один из наиболее мощных по возможностям хране­ния растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов.

PCX. Формат появился как формат хранения растровых данных программы PC PaintBrush фирмы Z-Soft и в свое время был одним из наиболее распространен­ных (расширение имени файла.PCX). Отсутствие возможности хранить цветоделенные изображения, недостаточность цветовых моделей и другие ограничения привели к утрате популярности формата. К настоящему времени устарел.

PhotoCD. Формат разработан фирмой Kodak для хранения цифровых растровых изображений высокого качества (расширение имени файла.PCD). Сам формат хранения данных в файле называется Image Рас, Файл имеет внутреннюю структуру, обеспечивающую хранение изображения с фиксированными величинами разрешений, и потому размеры любых файлов лишь незначительно отличаются друг от друга и находятся в диапазоне 4-5 Мбайт. Каждому разрешению присвоен собственный уровень, отсчитываемый от так называемого базового (Base), составляющего 512x768 точек. Всего в файле пять уровней — от Base/16 (128x192 точек) до Baser 16 (2048x3072 точек). При первичном сжатии исходного изображения применяется метод субдискретизации, практически без потери качества. Затем вычис­ляются разности Base – Basex4 и Basex4 – Basex16. Итоговый результат записывается в файл. Чтобы воспроизвести информацию с высоким разрешением, произ­водится обратное преобразование. Для хранения информации о цвете использована цветовая модель YCC.

Windows Bitmap. Формат хранения растровых изображений в операционной сис­теме Windows (расширение имени файла.BMP). Соответственно, поддерживается всеми приложениями, работающими в этой среде.

JPEG (Joint Photographic Experts Group). Формат предназначен для хранения растровых изображений (расширение имени файла. JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении «избыточной» информации, поэтому формат рекомендуют использовать только для электронных публикаций.

GIF (Graphics Interchange Format). Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расширение имени файла.GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном. Ограниченные возможности по количеству цветов обусловливают его применение исключительно в электронных публикациях.

PNG (Portable Network Graphics). Сравнительно новый (1995 год) формат хранения изображений, предназначенный для их публикации в Интернете (расширение имени файла.PNG). Создавался как замена для форматов GIF и JPEG. Поддерживаются три типа изображений — цветные с глубиной 8 или 24 бита и черно-белое с градацией 256 оттенков серого. Сжатие информации происходит практически без потерь, предусмотрены 254 уровня альфа-канала, чересстрочная развертка. Массового распространения так и не получил.

WMF (Windows MetaFile). Формат хранения векторных изображений операцион­ной системы Windows (расширение имени файла.WMF). По определению поддер­живается всеми приложениями этой системы. Однако отсутствие средств для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии, и другие недостатки ограничивают его применение.

EPS (Encapsulated PostScript). Формат описания как векторных, так и растровых изображений на языке PostScript фирмы Adobe, фактическом стандарте в области допечатных процессов и полиграфии (расширение имени файла.EPS). Так как язык PostScript является универсальным, в файле могут одновременно храниться векторная и растровая графика, шрифты, контуры обтравки (маски), параметры калибровки оборудования, цветовые профили. Для отображения на экране векторного содержимого используется формат WMF, а растрового — TIFF. Но экранная копия лишь в общих чертах отображает реальное изображение, что является существенным недостатком EPS. Действительное изображение можно увидеть лишь на выходе выводного устройства, с помощью специальных программ просмотра или после преобразования файла в формат PDF в приложениях Acrobat Reader, Acrobat Exchange.

PDF (Portable Document Format). Формат описания документов, разработанный фирмой Adobe (расширение имени файла.PDF). Хотя этот формат в основном предназначен для хранения документа целиком, его впечатляющие возможности позволяют обеспечить эффективное представление изображений. Формат является аппаратно-независимым, поэтому вывод изображений допустим на любых устройствах — от экрана монитора до фотоэкспонирующего устройства. Мощный алгоритм сжатия со средствами управления итоговым разрешением изображения обеспечивает компактность файлов при высоком качестве иллюстраций.

23. Цвет чрезвычайно важен в компьютерной графике как средство усиления зрительного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Считается, что цветовые рецепторы (колбочки) подразделяются на три группы, каждая из которых воспринимает только единственный цвет — красный, зеленый или синий. Нарушения в работе любой из групп приводит к явлению дальтонизма — искаженного восприятия цвета. Световой поток формируется излучениями, представляющими собой комбинацию трех «чистых» спектральных цветов (красный, зеленый, синий — КЗС) и их производных (в англоязычной литературе используют аббревиатуру RGB — Red, Green, Blue). Для излучающих объектов характерно аддитивное цветовоспроизведение (световые излучения суммируются), для отражающих объектов — субтрактивное цветовоспроизведение (световые излучения вычитаются). Примером объекта первого типа является электронно-лучевая трубка монитора, второго типа — полиграфический отпечаток.

Физические характеристики светового потока определяются параметрами мощности, яркости и освещенности. Визуальные параметры ощущения цвета характеризуются светлотой, то есть различимостью участков, сильнее или слабее отражающих свет. Минимальную разницу между яркостью различимых по светлоте объектов называют порогом. Величина порога пропорциональна логарифму отношения яркостей. Последовательность оптических характеристик объекта (расположенная по возрастанию или убыванию), выраженная в оптических плотностях или логарифмах яркостей, составляет градацию и является важнейшим инструментом для анализа и обработки изображения.

24. В компьютерной графике применяют понятие цветового разрешения (другое название — глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют True Color). С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие).

В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании).

Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Грассмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная незавимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

C1 = R1R+G1G + B1B;

С2 = R2R + G2G + В2В;

Cn=RnR +GnG + BnB;

C сум=(R1+ R2 +... + Rn) R+(G1+G2… + Gn)G + (B1+B2 +... + Bn)B

Таким образом, прямоугольная трехмерная координатная система цветового пространства для аддитивного способа формирования изображения имеет точку начала координат, соответствующую абсолютно черному цвету (цветовое излучение отсутствует), и три оси координат, соответствующих основным цветам. Любой цвет (С) может быть выражен в цветовом пространстве вектором, который описывается уравнением:

n=RnR + GnG + BnB

которое практически идентично уравнению свободного вектора в пространстве, рассматриваемому в векторной алгебре. Направление вектора характеризует цветность, а его модуль выражает яркость. Так как величина излучения основных цветов является основой цветовой модели, ее максимальное значение принято считать за единицу. Тогда в трехмерном цветовом пространстве можно построить плоскость единичных цветов, образованную треугольником цветности. Каждой точке плоскости единичных цветов соответствует след цветового вектора, пронизывающего ее в этой точке. Следовательно, цветность любого излучения может быть представлена единственной точкой внутри треугольника цветности, в вершинах которого находятся точки основных цветов. То есть положение точки любого цвета можно задать двумя координатами, а третья легко находится по двум другим.

Если на плоскости единичных цветов указать значения координат, соответствующих реальным спектральным излучениям оптического диапазона (от 380 до 700 нм), и соединить их кривой, то мы получим линию, являющуюся геометрическим местом точек цветности монохроматических излучений, называемую локусом. Внутри локуса находятся все реальные цвета.

Чтобы избежать отрицательных значений координат, была выбрана колориметрическая система XYZ, полученная путем пересчета из RGB. В этой системе точке белого соответствуют координаты (0,33; 0,33). Колориметрическая система XYZ является универсальной, в ней можно выразить цветовой охват как аддитивных, так и субтрактивных источников цвета. Для аддитивных источников цветовой охват выражается треугольником с координатами вершин, соответствующими излучению основных цветов R, G, В.

Для субтрактивных источников (полученных в процессе печати красками, чернилами, красителями) используется модель CMYK, поэтому цветовой охват описывается шестиугольником, когда помимо точек синтеза основной триады (желтая, пурпурная, голубая) добавляются точки попарных наложений, соответствующие основным цветам: желтая + голубая = зеленая, желтая + пурпурная = красная, голубая + пурпурная = синяя.

25. Цветовая модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab(Communication Internationale de VEclairage — международная комиссия no освещению; L, a,b — обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIELab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.




Дата добавления: 2015-01-30; просмотров: 20 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.025 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав