Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

КЛАССИФИКАЦИЯ СИСТЕМ

Читайте также:
  1. A. 2.4. Показатели активности мышечной системы
  2. A1. Сущность и классификация организаций. Жизненный цикл организации и специфика управления на различных его этапах.
  3. b. 2.5. Показатели активности дыхательной системы
  4. C) определении будущего желаемого состояния всего предприятия и отдельных производственных систем;
  5. CASE-средства. Общая характеристика и классификация
  6. Cудебник 1550 г. Общая характеристика, система и источники
  7. I. Воспалительные заболевания пародонта как источник системных заболеваний человеческого организма.
  8. I. Генеалогическая классификация индоевропейских языков А. Мейе.
  9. I. Классификация лекарственных форм по агрегатному состоянию.
  10. I. Общая характеристика жанровой системы связей с общественностью.

Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.

Деление систем на физические и абстрактные позволяет раз­личать реальные системы (объекты, явления, процессы) и систе­мы, являющиеся определенными отображениями (моделями) ре­альных объектов.

Для реальной системы может быть построено множество сис­тем – моделей, различаемых по цели моделирования, по требуе­мой степени детализации и по другим признакам.

Например, реальная ЛВС, с точки зрения системного адми­нистратора, – совокупность программного, математического, информационного, лингвистического, технического и других видов обеспечения, с точки зрения противника, – совокупность объектов, подлежащих разведке, подавлению (блокированию), уничтожению, с точки зрения технического обслуживания, – со­вокупность исправных и неисправных средств.

Деление систем на простые и сложные (большие) подчерки­вает, что в системном анализе рассматриваются не любые, а имен­но сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.

Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что слож­ные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.

Во-первых, сложные системы обладают свойством работоспособно­сти – способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной сис­темы и проявляется в изменении степени деградации выполняе­мых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состоя­ниях: полной работоспособности (исправном) и полного отказа (неисправном).

Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типа­ми считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-след­ственные, отношения истинности), информационные, простран­ственно-временные. По этому признаку будем отличать сложные системы от больших систем, представляющих совокупность од­нородных элементов, объединенных связью одного типа.

В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегративность (целостность), или эмерджентность. Другими словами, от­дельное рассмотрение каждого элемента не дает полного пред­ставления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.

Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее опи­сания (снятия неопределенности). В этом случае общее количе­ство информации о системе S, в которой априорная вероятность появления j-го свойства равна р(уj) определяется известным со­отношением для количества информации

. (6)

Это энтропийный подход к дескриптивной (описательной) сложности.

Одним из способов описания такой сложности является оцен­ка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.

В общей теории систем утверждается, что не существует сис­тем обработки данных, которые могли бы обработать более чем 2×10547 бит в секунду на грамм своей массы. При этом компью­терная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 10593 бит информации (предел Бреммермана). Задачи, требующие обработки более чем 10593 бит, называются трансвычислительными. В практическом плане это означает, что, например, пол­ный анализ системы из 110 переменных, каждая из которых мо­жет принимать 7 разных значений, является трансвычислитель­ной задачей.

Для оценки сложности функционирования систем применя­ется алгоритмический подход. Он основан на определении ресур­сов (время счета или используемая память), используемых в сис­теме при решении некоторого класса задач. Например, если фун­кция времени вычислений является полиномиальной функцией от входных данных, то мы имеем дело с полиномиальным по времени, или «легким» алгоритмом. В случае экспоненциального по времени алгоритма говорят о его «сложности». Алгоритмическая сложность изучается в теории NP-полных задач.

Сложные системы допустимо делить на искусственные и ес­тественные (природные).

Искусственные системы, как правило, отличаются от природ­ных наличием определенных целей функционирования (назначе­нием) и наличием управления.

Рассмотрим еще один важный признак классификации сис­тем. Принято считать, что система с управлением, имеющая не­тривиальный входной сигнал x(t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабаты­вающий поток информации (исходные данные) x(t) в поток ин­формации (решение по управлению) y(t).

В соответствии с типом значений x(t), y(t), z(t) и t системы де­лятся на дискретные и непрерывные.

Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифферен­циальных уравнений и уравнений в частных производных позво­ляет исследовать динамические системы с непрерывной перемен­ной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными события­ми (ДСДС), не поддающиеся такому описанию. Изменения со­стояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Мате­матические (аналитические) модели заменяются на имитацион­ные, дискретно-событийные: модели массового обслуживания, сети Петри, цепи Маркова и др.

Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1 а, б.

Для ДСДС траектория является кусочно-постоянной и фор­мируется последовательностью событий и. Последовательность отрезков постоянства отражает последовательность состояний z системы, а длительность каждого отрезка отражает время пре­бывания системы в соответствующем состоянии. Под состоя­нием при этом понимается «физическое» состояние (например, число сообщений, ожидающих передачи в каждом узле обра­ботки). Состояния принимают значения из дискретного мно­жества.

Таким образом, траектория описывается последовательно­стью из двух чисел (состояния и времени пребывания в нем). Сле­дует подчеркнуть, что термин «дискретный» отличается от ши­роко используемого прилагательного «цифровой», поскольку последнее означает лишь то, что анализ задачи ведется не в тер­минах вещественной числовой переменной, а численными мето­дами. Траектория ДСНП, состояниями которой являются точки пространства R", постоянно изменяется и, вообще говоря, разви­вается на основе непрерывных входных воздействий. Здесь под состоянием понимается «математическое» состояние в том смыс­ле, что оно включает в себя информацию к данному моменту вре­мени (кроме внешних воздействий), которая необходима для од­нозначного определения дальнейшего поведения системы. Ма­тематическое определение включает в себя и физическое определение, но не наоборот.

Для перехода от детерминированной к стохастической систе­ме достаточно в правые части соотношений (4) и (5) добавить в качестве аргументов функционалов случайную функцию p(t), принимающую значения на непрерывном или дискретном мно­жестве действительных чисел.

Следует иметь в виду, что в отличие от математики для сис­темного анализа, как и для кибернетики, характерен конструк­тивный подход к изучаемым объектам. Это требует обеспечения корректности задания системы, под которой понимается возмож­ность фактического вычисления выходного сигнала y(t) (с той или иной степенью точности) для всех t > 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех ti;. Поэто­му при изучении сложных систем приходится переходить к ко­нечным аппроксимациям.

 

Рис. 1. Типичные примеры фазовых траекторий

ДСДС (a) и ДСНП (б)

 

Системы с нетривиальным входным сигналом x(t), источни­ком которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяс­нить разницей в состояниях, называются открытыми.

Признаком, по которому можно определить открытую систе­му, служит наличие взаимодействия с внешней средой. Взаимо­действие порождает проблему «предсказуемости» значений вы­ходных сигналов и, как следствие, - трудности описания откры­тых систем.

Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных сис­тем. Простейший аттрактор, называемый математиками непод­вижной точкой, представляет собой такой вид равновесия, кото­рый характерен для состояния устойчивых систем после кратков­ременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маят­ника. Все разновидности предельного цикла предсказуемы. Тре­тья разновидность называется странным аттрактором. Обнару­жено много систем, имеющих встроенные в них источники нару­шений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя проме­жутки должны быть регулярными и предсказуемыми, так как вен­тиль зафиксирован и поток воды постоянен.

Математическим примером странного аттрактора является аттрактор Хенона - система уравнений, смоделированная в Lab VIEW (рис. 2 а, б).

Понятие открытости систем конкретизируется в каждой пред­метной области. Например, в области информатики открытыми информационными системами называются программно-аппарат­ные комплексы, которым присущи следующие свойства:

переносимость (мобильность) - программное обеспечение
(ПО) может быть легко перенесено на различные аппаратные
платформы и в различные операционные среды;

стандартность - программное обеспечение соответствует
опубликованному стандарту независимо от конкретного разра­ботчика ПО;

наращиваемость возможностей - включение новых про­граммных и технических средств, не предусмотренных в перво­начальном варианте;

совместимость - возможность взаимодействовать с други­ми комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах.

Примером открытой среды является модель OSE (Open System Environment), предложенная комитетом IEEE POSIX. На основе этой модели Национальный институт стандартов и технологии США выпустил документ «Application Portability Profile (APP). The U.S. Government's Open System Environment Profile OSE/1 Version 2.0», который определяет рекомендуемые спецификации в области информационных технологий, гарантирующие мобиль­ность системного и прикладного программного обеспечения.

В отличие от открытых замкнутые (закрытые) системы изо­лированы от среды - не оставляют свободных входных компо­нентов ни у одного из своих элементов. Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Век­тор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая из­менение их внутреннего состояния во времени. Примером физи­ческой замкнутой системы является локальная сеть для обработ­ки конфиденциальной информации.

 

Рис. 2. Аттрактор Хенона:

а - программная модель; б - поведение в пространстве состояний

 

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения зам­кнутой системы к состоянию равновесия она стремится к мак­симальной энтропии (дезорганизации), соответствующей мини­мальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по от­ношению к системе свободную энергию, и этим поддерживают организацию.




Дата добавления: 2015-02-16; просмотров: 18 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав