Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Мосты и коммутаторы Ethernet

Читайте также:
  1. Ethernet (от англ. ether «эфир») — пакетная технология передачи данных преимущественно локальных компьютерных сетей.
  2. Изменение в формате пакетов Ethernet при использовании VLAN.
  3. Коммутаторы 3-го уровня
  4. Малярный столик предназначен для проведения отделочных и ремонтных работ внутри помещения. Разборные передвижные помосты. Вышка тура серии ВСР. Стремянки. Косоур.
  5. Мосты переменного тока
  6. Мосты постоянного тока
  7. Повторители и концентраторы Ethernet
  8. Сетевые адаптеры Ethernet

Мост (bridge) является средством передачи кадров между двумя (или более) сегментами — доменами коллизий. Мост анализирует заголовок кадра — его интересуют МАС-адреса источника и получателя. Мост прослушивает кадры, приходящие каждый на свой порт, и составляет списки МАС-адресов узлов, подключенных к этим портам (по адресам источника). Если приходящий кадр имеет адрес назначения, принадлежащий тому же сегменту, то этот кадр мостом фильтруется — никуда не транслируется. Если адрес назначения известен мосту и относится к другому сегменту, мост транслирует этот кадр в соответствующий порт. Если положение адресата назначения еще не известно мосту, кадр транслируется во все порты (кроме того, откуда он пришел). Широковещательные и многоадресные кадры также транслируются во все порты. Трансляция предполагает доступ к сегменту по обычной схеме: ожидание отсутствия несущей, передача кадра и в случае коллизий повторные попытки передачи. Для выполнения этих процедур мост должен иметь буферную память для промежуточного хранения кадров, а также память для хранения списков МАС-адресов узлов сегментов всех портов. Описанный алгоритм поведения относится к «прозрачным» мостам (transparent bridge), определенным стандартом IEEE 802.1d.

Коммутатор (switch) в принципе выполняет те же функции, что и мост, но предназначен для несколько иных целей. Коммутатор используется как средство сегментации — уменьшения количества узлов в доменах коллизий. В предельном случае — микросегментации — к каждому порту коммутатора подключается только один узел. При этом коммутатор должен направить в нужный порт каждый приходящий кадр, что предъявляет высокие требования к производительности процессора коммутатора. Если к порту коммутатора подключается один узел (станция или другой коммутатор), то появляется возможность работы в полнодуплексном режиме. При этом коллизии как таковые отсутствуют.

Существуют два основных подхода к коммутации — с промежуточным сохранением и «на лету».

Технология с промежуточным хранением (store and forward) предполагает, что каждый кадр, пришедший в порт, целиком принимается в буферную память. Далее процессор анализирует его заголовок, адрес источника использует для построения своих таблиц, а по адресу назначения определяет порт, в который кадр должен быть передан. В случае многоадресной или широковещательной передачи это будет группа из всех остальных портов. Передача в порт(ы) производится по мере его (их) освобождения, согласно процедуре CSMA/CD. После успешной передачи (во все требуемые порты) кадр из памяти удаляется, освобождая место. Эта технология позволяет анализировать кадр (проверять CRC-код) и игнорировать ошибочные (что делается не всегда). Недостатком является значительная задержка передачи кадров — по крайней мере на время приема кадра (для максимально длинного кадра при 10 Мбит/с — 1,22 мс).

Коммутация на лету (on-the-fly) выполняется по возможности без промежуточного хранения. Порт принимает кадр, одновременно анализируя его поле заголовка. Как только пройдут биты адреса назначения — первые 6 байт после преамбулы, — коммутатор уже может пересылать кадр в порт(ы) назначения, если они не заняты. В случае, если порт назначения занят, промежуточное хранение неизбежно. Коммутация на лету вносит минимальную задержку — при свободном порте назначения она составит (8+6)х8 = 112 bt, для скорости 10 Мбит/с — 11,2 мкс. Однако проверка CRC не производится, и коммутатор распространяет все кадры, в том числе и короткие, отсеченные коллизиями.

В отличие от мостов, число портов которых было невелико (часто всего два), коммутаторы имерт множество портов, между которыми для каждого пакета должна устанавливаться виртуальная цепь передачи. В общем случае N-портовый коммутатор с полудуплексными портами должен обеспечивать до N/2 одновременно действующих виртуальных цепей. В случае полного дуплекса количество цепей теоретически может достигать и N, но такое равномерное распределение «заявок» на связи практически не встречается.

В зависимости от производительности коммутатор может быть блокирующим и неблокирующим. Неблокирующий коммутатор способен обрабатывать все кадры, приходящие на все его порты с максимальной скоростью, которую обеспечивает среда передачи. Очевидно, что для этого производительность «коммутационной фабрики» должна быть не меньшей, чем сумма пропускной способности половины портов. В случае полного дуплекса в этом соотношении пропускную способность порта следует считать равной удвоенной битовой скорости (т. е. 20, 200 или 2000 Мбит/с). Для скорости 10 Мбит/с и при не очень большом количестве портов это достигается относительно просто, высокие скорости создают определенные трудности, особенно при большом количестве портов. В мостах с задачей коммутации успешна справлялся один процессор, как правило, там применялся процессор общего назначения. В коммутаторах для получения приемлемой производительности каждый порт (или группа портов) снабжается своим процессором, и эти процессоры работают параллельно. В качестве процессоров портов часто применяют специализированные микросхемы (ASIC). Их работой управляет центральный процессор коммутатора. Соединения между портами могут организовываться разными способами:

· Коммутационная матрица — это аппаратная схема (электронный коммутатор), которая позволяет организовать цепь передачи логического сигнала между любой парой портов. Процессор каждого порта принимает кадр сначала в свой буфер. Как только процессор порта определяет адрес назначения очередного кадра, он запрашивает у матрицы требуемое соединение. Если выходной Порт свободен, устанавливается логическая связь и кадр через матрицу поступает на передатчик выходного порта. Если выходной порт занят, кадр сохраняется в буферной памяти входного порта на время до освобождения требуемого выходного. Нетрудно заметить, что объем (количество элементов) схемы коммутационной матрицы растет пропорционально квадрату числа портов, поэтому матрица применяется при ограниченном (и фиксированном) числе портов.

· Объединяющая шина высокой производительности связывает процессоры всех портов. Кадры по ней пересылаются мелкими фрагментами (ячейками) на скорости, существенно большей битовой, скорости портов. В результате каждая передача занимает малую часть времени шины и несколько пар процессоров могут обмениваться кадрами псевдопараллельно. Производительность шины в идеале должна быть не меньше суммы пропускной способности половины портов. До тех пор, пока это условие соблюдается, увеличение количества портов не вызывает особых технических проблем. Скорость передачи по шине не зависит от скорости работы конкретных портов, а согласование размеров ячеек со стандартным для ATM облегчает возможность построения гибридных коммутаторов Ethernet — Token Ring — FDDI — ATM. Объединяющая шина широко используется в модульных коммутаторах на основе шасси. Здесь шина реализуется в виде пассивной объединяющей панели (passive backplane), а модули с группами портов могут устанавливаться в относительно произвольном количестве с возможностью «горячей» замены (hot swap).

· Разделяемая память — это единая буферная память, доступная процессорам всех портов коммутатора. Все входящие кадры «складываются» в эту память, а процессорам выходных портов передаются лишь указатели на блоки памяти, содержащие предназначенные им кадры. Процессоры выходных портов после успешной передачи отмечают эти блоки как свободные для дальнейшего использования. Общая память позволяет не делать больших запасов памяти для каждого порта (на случай перегрузок). Разделяемая память проще реализуется в одноплатных коммутаторах (шина памяти сугубо локальна).

На практике используются и комбинации этих основных способов — например, модули с коммутационными матрицами могут быть связаны между собой объединяющей шиной.

Конструктивно коммутаторы могут иметь несколько вариантов исполнения в зависимости от их назначения и производительности:

· Коммутаторы с фиксированным числом портов — самые дешевые устройства, применяемые для числа портов до 24-30. Часто 1-2 порта имеют скорость, на порядок большую скорости основной массы портов. Эти порты предназначаются для подключения приоритетных узлов (серверы) и связи с другими коммутаторами. Более дорогие модели могут иметь несколько гнезд для подключения различных интерфейсных модулей, в том числе оптических, с резервированием линий и т. п. В больших сетях такие коммутаторы применяются на уровне этажных распределителей, в малых сетях они могут быть и центральными устройствами.

· Модульные коммутаторы могут иметь до сотни портов (в зависимости от размера шасси, плотности портов модулей и производительности). Эти коммутаторы применяют в качестве магистральных на уровне кампусных, домовых распределителей, а иногда и в этажных. Удельная стоимость порта снижается по мере увеличения числа установленных модулей (накладные расходы на шасси велики), но все равно остается выше, чем у устройств с фиксированной конфигурацией. Производительность, как правило, тоже выше.

· Стековые коммутаторы в идеале должны иметь пропускную способность стекового интерфейса не ниже суммы пропускной способности половины портов всех коммутаторов, объединяемых в стек. На практике этот интерфейс становится узким местом, и количество объединяемых устройств часто ограничивается четырьмя. Топология соединений устройств стека может быть различной; цепочка, кольцо» звезда. При связи в цепочку отказ одного устройства может привести к распаду стека на две несвязанные части. Этот недостаток устраняется при закольцовывании устройств. И в цепочке, и в кольце пропускная способность стекового интерфейса разделяется всеми устройствами. Этого недостатка позволяет избежать построение стека с помощью специального матричного коммутатора, к которому подключаются объединяемые коммутаторы. Теоретически, пропускная способность такого стека ограничивается суммой пропускных способностей коммутаторов или суммой пропускных способностей их стековых интерфейсов (меньшей из этих сумм). Однако это достигается ценой применения Дополнительного довольно дорогого устройства, которое тоже является единой точкой отказа стека, В отличие от стеков повторителей, которые могут быть и распределенными, стек коммутаторов практически всегда локален — длина соединительных кабелей не превышает 0,5-1 м.

Производительность коммутаторов рассматривается в двух аспектах: максимальное количество обрабатываемых кадров за единицу времени (определяется производительностью процессоров коммутатора) и максимальное количество бит,' пропускаемых за единицу времени (может ограничиваться производительностью объединяющей шины и/или разделяемой буферной памяти). Однако, даже если пропускная способность коммутатора будет достаточно высокой, возможны перегрузки, если ряд портов будет состязаться за право передачи кадров в один из портов. При перегрузке буфер начнет переполняться и часть пакетов будет теряться без уведомления источника иг получателя. Конечно, протоколы верхних уровней заметят пропажу кадров и организуют их повторную передачу, но это произойдет не быстро. В результате коммутатор может даже замедлить работу сетевых приложений (при формально высокой скорости передачи будет большое время отклика).

· В полудуплексном режиме коммутатор может довольно просто бороться с перегрузками, притормаживая входные порты. Для этого он может специально устраивать коллизии (тогда источник будет вынужден повторно передавать кадр) или захватывать среду передачи по окончании очередного кадра чуть раньше, чем предписывает стандарт 802.3. Эти способы воздейг ствия называются обратным давлением и агрессивным поведением коммутатора.

· В полнодуплексном режиме обратное воздействие вышеописанными способами невозможно. Для регулирования потока в полнодуплексных вариантах Ethernet был принят стандарт IEEE 802.3x. Здесь определены служебные символы «приостановить Передачу на определенное время» и «продолжить передачу», которые вводятся в виде кодов физического уровня. Полнодуплексные устройства (коммутаторы и сетевые адаптеры), поддерживающие 803.3х, обязаны реагировать на их появление.

Мосты и коммутаторы позволяют разбивать сеть на отдельные сегменты — домены коллизий. Это означает, что коллизии не распространяются за границы сегментов (хотя кадры, поврежденные коллизиями/рядом коммутаторов распространяются беспрепятственно). Однако широковещательные и многоадресные кадры при применении обычных прозрачных мостов (коммутаторов) будут путешествовать по всей сети, вызывая ее нежелательную загрузку. Локализацию широковещательного и многоадресного трафика позволяют осуществлять интеллектуальные коммутаторы, поддерживающие виртуальные локальные сети.

Топологические ограничения, относящиеся к сетям на повторителях, справедливы для каждого домена коллизий. Сеть, построенная с применением обычных мостов и коммутаторов, не должна иметь петель — между любой парой узлов в ней должен существовать только один путь.




Дата добавления: 2015-02-16; просмотров: 30 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав