Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

КРАТКИЕ СВЕДЕНИЯ О РАЗВИТИИ ЭЛЕКТРОЭНЕРГЕТИКИ И ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ.

Читайте также:
  1. T-лимфоциты цитотоксические: общие сведения
  2. А.Н.Сысин, его роль в развитии отечественной гигиены и в становлении сан-эпид.службы в России
  3. А.П. Окладников и его вклад в развитии советской археологии.
  4. А.П. Сумароков. Краткие биографические сведения. Завершение А.П. Сумароковым реформы стихосложения. «Две эпистолы», разработка теории жанров.
  5. А78. В XVI в. в развитии русской культуры преобладали
  6. Агроэкосистемы, их отличия от природных экосистем. Последствия деятельности человека в экосистемах. Сохранение экосистем.
  7. Акты Президента РФ, содержащие сведения, составляющие государственную тайну, или сведения конфиденциального характера, вступают в силу со дня их подписания.
  8. Анализ и выявление резервов повышения эффективности производственных систем.
  9. Анамнез – совокупность сведений, сообщаемых больным или его родственниками. Такие сведения используются при установлении диагноза.
  10. Антропогенная динамика геосистем.

Глава 1.

1.1. Развитие электроэнергетики России

 

Развитие электрических сетей, разрушенных в годы Гражданской войны, началось примерно с 1920 г. в соответствии с планом ГОЭЛРО. Этим планом была предусмотрена централизация электроснабжения всего народного хозяйства путем строительства крупных электростанций и электрических сетей и последовательного объединения электростанций в районные и межрайонные энергетические системы. Уже в те годы для специалистов было ясно, что объединение электростанций в энергетические системы сулит несомненные преимущества. К основным преимуществам такого объединения следует отнести:

 

В 1922 г. была введена первая очередь Каширской ГРЭС мощностью 12 МВт с первой линией электропередачи 110 кВ до Кожуховской подстанции в Москве, а в 1925 г. были введены в действие первая очередь Шатурской ГРЭС мощностью 32 МВт и двухцепная линия 110 кВ Шатурская ГРЭС — Москва, доведенная до центра города, а затем до Карачаровской и Кожуховской подстанций. Это было, по существу, начало создания Московского кольца напряжением 110 кВ. К этому кольцу по радиальным линиям присоединялись другие районные электростанции.

В 1926 г. была пущена Волховская ГЭС мощностью 56 МВт, которая двумя линиями 110 кВ протяженностью 130 км была соединена с Северной подстанцией Ленинграда. В том же году была пущена линия 110 кВ от Горьковской ГРЭС до г. Горького. Так, уже к 1929 г. протяженность электрических сетей напряжением выше 10 кВ увеличилась до 2032 км, соответственно увеличилась и мощность понизительных подстанций.

Развитие электрических сетей, появление сравнительно протяженных линий электропередачи, объединение на параллельную работу ряда электростанций потребовали развития научных исследований в области передачи и распределения электрической энергии. В Москве создается Государственный экспериментальный электротехнический институт (ГЭЭИ), который впоследствии был переименован во Всесоюзный электротехнический институт (ВЭИ). Здесь изучались процессы, происходящие в электропередачах высокого и сверхвысокого напряжений, проводились исследования по вопросам создания соответствующей высоковольтной аппаратуры.

Проводились теоретические и экспериментальные исследования проблем, связанных с передачей и распределением электроэнергии, в Ленинградском политехническом институте, Московском высшем техническом училище и ряде других высших учебных заведений.

Уже в конце 20-х годов научно-исследовательские и проектные организации, заводы начинают создавать отечественное электротехническое оборудование. В это же время была принята единая шкала номинальных напряжений: 3, 6, 10, 35, 110 кВ; предполагалось в дальнейшем применение напряжений 220 и 380 кВ.

В 1926 г. была создана диспетчерская служба в Московской энергосистеме, а впоследствии аналогичные службы были созданы в Ленэнерго Уралэнерго и других энергосистемах.

Для 30-х годов XX в. характерно стремительное увеличение темпов электрификации, развития электроэнергетического хозяйства. Значительно уплотнился график электрической нагрузки; годовое число часов ис­пользования мощности всех электростанций в 1940 г. возросло до 4650 против 2720 в 1928 г., а для районных электростанций этот же показатель возрос с 3260 до 5481 часа в год. За этот период изменился характер электростанций — заметно увеличилась единичная мощность агрегатов, увеличился удельный вес электростанций, построенных у источников топлива, увеличилась доля гидроэлектростанций в выработке электроэнергии. Это в свою очередь привело к необходимости передачи электроэнергии на дальние расстояния, что, естественно, требовало повышения напряжения. Последнее обусловило значительное развитие электрических сетей для передачи и распределения электроэнергии.

Рост мощностей и дальности передачи электроэнергии, необходимость повышения надежности электроснабжения потребовали решения ряда новых технических проблем. Особо важное значение при возрастающей дальности передачи электроэнергии получили вопросы расчетов устойчивости параллельной работы электростанций и способов обеспечения этой устойчивости. На основе глубокого изучения переходных процессов в электрических системах была разработана методика расчетов, проведены исследования в электрических системах. Были изучены вопросы аварийного регулирования турбин, исследованы возможности повышения мощности и дальности передачи при помощи автоматического регулирования возбуждения синхронных машин; был создан электронный регулятор напряжения. В эти годы были найдены реальные средства повышения пределов динамической устойчивости: форсировка возбуждения синхронных генераторов, применение аварийной разгрузки по частоте (АЧР).

Загрузка...

Во второй половине 30-х годов XX в. уже велась разработка вопросов, связанных с возможностью передачи электроэнергии от будущей Куйбышевской ГЭС в район Москвы на напряжении 380—400 кВ; в Ленинграде в Ленинградском энергофизическом институте была построена опытная трехфазная линия 500 кВ, на которой проводились исследования на дальнюю перспективу — использование более высоких напряжений для передачи электроэнергии.

В годы Великой Отечественной войны энергосистемам и электрическим сетям, оказавшимся в зоне военных действий, был нанесен огромный ущерб — было разрушено более 10 тыс. км линий электропередачи напряжением более 10 кВ. Но уже в конце 1941 г. начались восстановительные работы, и в 1945 г. общая протяженность электрических сетей превысила довоенный уровень. В 1946—1950 гг. происходит объединение энергетических систем Центра. Для координации и управления объединенными энергосистемами и регулирования перетоков мощности было создано объединенное диспетчерское управление (ОДУ) Центра, которое в 1959 г. было реорганизовано в объединенное диспетчерское управление Единой энергетической системы (ОДУ ЕЭС). Мощность объединенной энергетической системы (ОЭС) Центра, в состав которой входили Московская, Ярославская, Ивановская и Горьковская энергосистемы, достигла в 1959 г. 2183 МВт.

Наибольшее развитие энергосистем и их объединение происходят в 50-х годах XX в. в результате сооружения мощных электростанций на р. Волге, Каме и строительства первых линий электропередачи 400 кВ, переведенных впоследствии на напряжение 500 кВ. В связи с большим ростом уровня энергетики оказалось целесообразным строительство крупных тепловых электростанций с агрегатами большой единичной мощности, что создало необходимые условия для построения крупных объединенных энергосистем.

Необходимость создания дальних линий электропередачи напряжени­ем 500 кВ и протяженностью более 1000 км потребовала решения новых сложных технических проблем и проведения большого объема научно-исследовательских работ. Особенно большое значение для линий электропередачи этого класса напряжений имели вопросы обеспечения устойчивости параллельной работы, защиты от перенапряжений, короны, надежной работы автоматики и релейной защиты. И эти проблемы решались усилиями ученых и инженеров многих научно-исследовательских институтов, проектных организаций, высших учебных заведений. Были разработаны системы автоматического регулирования с регуляторами «сильного действия» в цепях возбуждения синхронных генераторов. В целях снижения индуктивного сопротивления линии для повышения натуральной мощности и устойчивости передачи разрабатывались вопросы оптимального расщепления проводов каждой фазы, что одновременно позволило снизить потери на корону. Для повышения пропускной способности электропередачи были разработаны вопросы применения продольной емкостной компенсации, осуществляемой включением в линию батарей конденсаторов. Общая протяженность линий электропередачи 500 кВ к концу 1970 г. составила около 14 тыс. км.

Сооружение крупных электростанций, объединение энергосистем требовали еще большей пропускной способности, чем пропускная способность линий 500 кВ. В связи с этим в ряде ведущих промышленно развитых стран (СССР, США, Канаде) велись интенсивные работы по дальнейшему повышению пропускной способности электропередач и связанному с этим повышению их напряжения.

В 1967 г. была введена в эксплуатацию первая опытно-промышленная электропередача 750 кВ Конаковская ГРЭС — Москва протяженностью 90 км, а уже к 1985 г. протяженность линий электропередачи этого напряжения составила более 6 тыс. км.

Рост мощностей электростанций: тепловых и атомных — до 4 млн кВт, гидроэлектростанций — до 6 млн кВт, увеличение дальности передачи электроэнергии потребовали внедрения линий электропередачи нового класса напряжений переменного тока — 1150 кВ, а также строительства линий электропередачи постоянного тока напряжением 1500 кВ.

Первые линии электропередачи новой ступени напряжения переменного тока 1150 кВ были введены в 1985 г. на участках Экибастузская ГРЭС — Кокчетав — Кустанай.

В результате у нас сложились две шкалы номинальных напряжений воздушных линий электропередачи — 110—150—330—750 кВ и 110— 220—500—1150 кВ. Каждая последующая ступень в этих шкалах превышает предыдущую примерно в 2 раза, что позволяет повысить пропускную способность линий примерно в 4 раза.

Следует отметить, что повышение номинального напряжения линий электропередачи имеет и экономические преимущества, так как при этом резко снижается удельная (на 1 км) себестоимость передачи электроэнергии и сужается коридор, отводимый под прокладку трасс электропередач. Первая шкала напряжений получила распространение в северо-западных областях России, на Украине и на Северном Кавказе, вторая — в центральных областях и на всей территории России к востоку от Москвы.

В настоящее время линии 110—150—220 кВ используются, главным образом, в районных распределительных сетях для передачи электроэнергии к крупным узлам нагрузки. Электропередачи 330—500—750—1150 кВ, по которым может быть передана мощность от 350 до 5000 МВт, решают задачи системного характера. Они используются для создания мощных межсистемных и внутрисистемных связей, передачи электроэнергии от удаленных электростанций, например атомных, в приемные системы.

В 1994 г. в основном завершился процесс разгосударствления предприятий топливно-энергетического комплекса. При этом государственные предприятия и организации изменили форму собственности и были преобразованы в акционерные общества.

В электроэнергетике было создано Российское акционерное общество энергетики и электрификации (РАО «ЕЭС России»), в уставной капитал которого переданы в качестве государственного вклада:

 

В перспективе до 2010 г. наряду с разработкой высокоэффективного производства электроэнергии программой «Энергетическая стратегия России» предусмотрена разработка столь же эффективных систем ее передачи, распределения и использования. В решении этих задач исключительно велика роль разработок в области электрофизики, обеспечивающих в первую очередь:

 

Решение этих задач должно сочетаться с углубленным анализом вопросов развития, функционирования, устойчивости и надежности Единой энергетической системы России, ее связей с электроэнергетическими системами других стран, в первую очередь стран СНГ.

 

1.2. Энергетические и электроэнергетические системы

 

 

Преимущества электроэнергетических систем столь велики, что в 1974 г. лишь менее 3 % всего количества электроэнергии было выработано отдельно работавшими электростанциями. Мощность электроэнергетических систем непрерывно возрастает. Из районных электроэнергетических систем создаются мощные объединенные энергосистемы.

Энергетическое производство может быть представлено структурной схемой (показанной на рис.1.1), и в особенности производство электроэнергии, обладает рядом особенностей, резко отличающих энергетическое производство от других отраслей промышленности. Первая и важнейшая особенность электроэнергетической системы заключается в том, что производство электроэнергии, ее распределение и преобразование в другие виды энергии осуществляются практически в один и тот же момент времени. Другими словами, электроэнергия нигде не аккумулируется. Именно эта особенность превращает всю сложную электроэнергетическую систему, отдельные звенья которой могут быть географически удалены на многие сотни километров, в единый механизм, и приводит к тому, что все элементы системы взаимно связаны и взаимодействуют. Энергия, произведенная в системе, равна энергии, потребленной в ней. Это равенство справедливо для любого короткого промежутка времени, т.е. между мощностями энергосистемы имеется точный баланс.

 

Рис. 1.1 Структурная схема простейшей электрической системы

 

Таким образом, одновременность процессов производства, распределения и преобразования электроэнергии превращает электроэнергетическую систему в единое целое.

Вторая особенность электроэнергетической системы — это относительная быстрота протекания переходных процессов в ней. Волновые процессы совершаются в тысячные или даже миллионные доли секунды; процессы, связанные с короткими замыканиями, включениями и отключениями, качаниями, нарушениями устойчивости, совершаются в течение долей секунды или нескольких секунд.

Третья особенность электроэнергетической системы заключается в том, что она тесно связана со всеми отраслями промышленности, связью, транспортом и т. п. Эта связь осуществляется гигантской совокупностью разнообразнейших приемников электрической системы, получающей питание электроэнергией от современной энергетической системы. Эта особенность энергетической системы резко повышает актуальность обеспечения надежности работы энергосистемы и требует создания в энергетических системах достаточного резерва мощности во всех ее элементах.

Все указанные выше моменты особенно характерны для электроэнергетической системы, т.е. для системы, производящей, распределяющей и преобразующей электроэнергию.

Если обратиться к процессам производства, распределения и потребления тепловой энергии, то указанные выше особенности в известной мере будут иметь меньшее значение.

В тепловых установках имеется, хотя и очень небольшая, способность аккумуляции (паровые котлы, бойлеры, отопительные приборы и т. п.), имеются даже специальные тепловые аккумуляторы. Следовательно, процессы в отдельных звеньях тепловой энергетической системы (котлы, бойлеры, теплопередачи, приемники тепловой энергии) не так жестко взаимосвязаны, как в электроэнергетической системе. Так, например, прекращение подачи пара в бойлеры теплофикационных станций не вызовет мгновенного изменения режима работы отопительных приборов в тепловой сети. Все же аккумулирующая способность элементов тепло­энергетической системы невелика, и взаимосвязь отдельных элементов играет существенную роль.

Большинство переходных процессов совершается в тепловых системах значительно медленнее, чем в электрических, хотя гидравлические переходные процессы могут все же быть достаточно быстрыми.

Наконец, тепловая энергосистема имеет более ограниченную связь с отраслями народного хозяйства по сравнению с электрической системой.

Так как в современных энергетических системах производство тепловой энергии, как правило, комбинируется с производством электроэнергии, то все сказанное об особенностях электроэнергетической системы применимо вообще к любой энергетической системе.

Остановимся на некоторых важных обстоятельствах, вытекающих из указанных выше особенностей энергетических систем.

Первая особенность. Одновременность процессов производства, распределения и потребления электроэнергии приводит к тому, что нельзя произвести электроэнергию, не имея потребителей для нее, т.е. выработка электроэнергии жестко определяется ее потреблением. Заметим, что преобразование и передача энергии происходят во всех элементах системы с потерями энергии и, следовательно, потребление энергии должно учитывать не только полезное потребление, но и потери энергии в эле­ ментах преобразования и передачи. Отсюда вытекает следующее:

а) снижение выработки энергии на электростанциях против требуемого уровня из-за ремонтов оборудования, аварий и других причин при отсутствии резерва в системе требует снижения количества энергии, отпускаемой потребителю;

б) временное снижение потребления энергии потребителями из-за ремонта их оборудования, аварий и других причин при отсутствии в системе так называемых потребителей-регуляторов не дает возможности полностью использовать оборудование электростанции в этот период;

в) небаланс между мощностью электростанций и мощностью, потребляемой в системе, не может существовать. При снижении мощности электростанций одновременно автоматически снижается потребляемая мощность, и наоборот.

 

Ничего похожего нет ни в одной отрасли промышленности, где имеется возможность запасать продукт производства. Так, например, кратковременное снижение производства текстильных товаров совсем не требует немедленного снижения потребления этих товаров населением и, наоборот, снижение потребления текстильных товаров не может понизить производительность текстильных предприятий.

Вторая особенность. Быстрота протекания переходных процессов в электрической системе требует обязательного применения специальных автоматических устройств. Эти устройства, часто весьма быстродействующие, должны обеспечить надлежащую корректировку переходных процессов в системе. Правильный выбор и настройка всех этих автоматических устройств, к которым относятся аппараты защиты от перенапряжений, установки релейной защиты, автоматические регуляторы, автоматические выключатели и т. п., немыслимы без учета работы всей системы как единого целого. Все это способствует широчайшему внедрению автоматики в энергетических системах и полной автоматизации отдельных электростанций, подстанций и т. п.

Третья особенность. Связь работы энергосистем со всеми отраслями народного хозяйства предопределяет необходимость своевременного их развития. Рост энергетических систем должен обязательно опережать рост потребления энергии, иначе создание резервов в энергосистемах невозможно. С другой стороны, рост энергетических систем должен быть гармоничным: все элементы системы должны развиваться без каких-либо диспропорций в развитии отдельных элементов.

По мере развития энергосистем и сближения границ их электрических сетей увеличивается целесообразность их объединения.

Соединение энергосистем между собой осуществляется с помощью межсистемной электрической связи, состоящей из одной или нескольких цепей электропередачи.

Основные доводы в пользу объединения энергосистем таковы:

а) уменьшение суммарного резерва мощности;

б) улучшение использования мощности и энергии гидроэлектростанций одной или обеих систем;

в) уменьшение суммарного максимума нагрузки объединяемых энергосистем;

г) взаимопомощь систем в случае неодинаковых сезонных изменений мощности электростанций и, в частности, гидроэлектростанций;

д) взаимопомощь систем в случае неодинаковых сезонных изменений нагрузки;

е) взаимопомощь систем в проведении ремонтов. Остановимся на некоторых из этих доводов.

 

Уменьшение суммарного резерва мощности дает в большинстве случаев наиболее существенные преимущества. Совершенно очевидно, что при соединении равновеликих по мощности систем оно дает пользу обеим системам. При соединении двух резко различных по мощности систем польза для мощной системы и для всего объединения в целом значительно меньше. Мощность межсистемной связи должна быть такой, чтобы в необходимых случаях резерв одной из систем мог быть передан в другую.

Рассмотрим случай объединения двух энергосистем. Уменьшение суммарного совмещенного максимума нагрузки обеих энергосистем обусловлено:

а) различием в моментах появления пика нагрузки обеих энергосистем; это различие может сильно изменяться в различные периоды года;

б) различием в моментах появления недельного, месячного или годового максимума.

 

Очень важно заметить, что первое различие дает тем более существенный эффект, чем большие пики имеют графики нагрузки вблизи периода максимума. Поэтому в системах с относительно ровным характером графика вблизи максимума этот эффект незначителен. Эффект, достигаемый за счет второго различия, зависит на протяжении недели от распределения выходных дней в промышленности, в каждой из энергосистем, на протяжении месяца — от характера промышленности в обеих энергосистемах, а на протяжении года является в известной мере случайным.

При окончательной оценке технико-экономического эффекта, достигаемого объединением энергосистем, необходимо учесть:

а) стоимость межсистемной связи;

б) наличие потерь энергии в связи;

в) усложнение регулирования частоты в связи с необходимостью во многих случаях автоматического регулирования или ограничения обменного потока мощности.

 

Объединенная энергосистема так же, как и отдельная энергосистема, является единым производственным комплексом. Однако наличие относительно слабой связи накладывает особый отпечаток на объединение энергосистем. Различие сказывается в том, что:

а) резкие изменения режима и даже аварии в одной системе редко отражаются на второй, если мощность связи невелика по сравнению с мощностью объединяемых систем;

б) при резких изменениях режима слабая связь может легко нарушиться и системы могут разделиться;

в) последнее обстоятельство требует автоматического ограничения перетоков мощности;

г) автоматическое регулирование частоты в объединении во многих случаях требует обязательного автоматического регулирования обменного потока мощности.

 

1.3. Электрические сети

 

Электрическая сеть как часть электроэнергетической системы обеспечивает возможность выдачи мощности электростанций, ее передачу на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и ее распределение по некоторой территории вплоть до непосредственных электроприемников.

Электрические сети современных энергосистем характеризуются многоступенчатостью, т.е. большим числом трансформаций на пути от источников электроэнергии к ее потребителям. Топологическая структура отдельных звеньев этой многоступенчатой сети достаточно сложна, она насчитывает десятки, а подчас и сотни узлов, ветвей и замкнутых контуров. Наряду со сложностью конфигурации характерной особенностью электрических сетей является их многорежимностъ. Под этим понимается не только разнообразие загрузки элементов сети в суточном и годовом разрезе при нормальном функционировании системы, вызываемое естественным изменением во времени нагрузки потребителей, но и обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях.

Все электроприемники, генераторы, трансформаторы и прочие элементы электроэнергетических систем проектируются для работы в длительном нормальном режиме при определенном напряжении, при котором эти элементы обладают наиболее целесообразными технико-экономическими показателями. Эти напряжения называются номинальными, и их значения всегда устанавливаются Государственным стандартом. В настоящее время для электрических сетей стандартизованы 4 напряжения менее 1 кВ (40, 220, 380 и 660 В) и 12 напряжений выше 1 кВ (3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ). Все перечисленные цифры соответствуют линейным (междуфазным) значениям напряжений трехфазной системы переменного тока.

 

Таблица 1.1

Классификация Электрических сетей по признакам, связанным с номинальным напряжением.

 

Признак Номинальные напряжения, кВ
< 1 3-35 110-220 330-750
Номинальное напряжение НН СН ВН СВН УВН
Охват территории Местные Районные Региональные
Назначение Распределительные Системообразующие
Характер потребителей Городские, промышленные, сельскохозяйственные

Примечание. Сети напряжением до 1 кВ называются сетями низкого напряжения (НН). Сети напряжением выше 1 кВ, в свою очередь, делятся на сети среднего (СН), высокого (ВН), сверхвысокого (СВН) и ультравысокого (УВН) напряжения.

Как уже упоминалось, сети современных энергосистем характеризуются весьма сложной структурой и конфигурацией. В этих условиях невозможно классифицировать их по какому-либо одному признаку, который мог бы считаться определяющим. Однако ряд признаков в той или иной мере связан со значением номинального напряжения сети Uном . К числу таких признаков можно условно отнести охват территории, назначение сети и частично характер ее потребителей. В табл. 1.1 приводятся элементы классификации по указанным выше признакам.

По размерам территории, охватываемой сетью, могут быть выделены так называемые местные (Uном ≤ 35 кВ), районные (110—220 кВ) и региональные сети (Uном ≥ 330 кВ). Линии электропередачи СВН, являющиеся основой последней категории сетей, служат как для связи отдельных районов и относительно небольших энергосистем в региональных ОЭС, так и для связи между собой крупных объединений.

По назначению различают системообразующие и распределительные сети. Первые осуществляют функции формирования районных энергосистем (РЭС) путем объединения их электростанций на параллельную работу, а также объединение РЭС и ОЭС между собой. Кроме того, они осуществляют передачу электроэнергии к системным подстанциям, выполняющим роль источников питания распределительных сетей. Распределительной линией считается линия, питающая ряд трансформаторных подстанций или вводы к электроустановкам потребителей. Такие линии и являются основой распределительной сети. Распределительные линии в принципе могут быть выделены в сетях различных номинальных напряжений. В связи с этим не следует отождествлять понятия местных и распределительных сетей, как это делалось ранее. В настоящее время по мере развития сетей СВН верхняя граница этого диапазона в ряде ОЭС сдвинулась в сторону более высоких напряжений, и современные сети 110—220 и даже 330 кВ постепенно приобретают характер распределительных. Так, по мере наложения вновь создаваемой сети 750 кВ на сеть 330 кВ в тех районах, где ранее последняя выполняла функции системообразующей, сети 330 кВ постепенно переходят в разряд распределительных. В будущем аналогичный процесс будет наблюдаться в тех частях ЕЭС России, где линии напряжением 1150 кВ возьмут на себя роль основных связей между ОЭС, в которых сейчас основными являются сети 500 кВ.

Наконец, местные и распределительные сети, согласно табл. 1.1, могут различаться по характеру подключаемых к ним потребителей. При этом определенную специфику имеют сети, осуществляющие электроснабжение промышленных предприятий, городов и сельскохозяйственных районов и называемые соответственно промышленными, городскими и сельскими. Так, сельские электрические сети характеризуются значительной протяженностью. Они охватывают территории со сравнительно невысокой плотностью нагрузки, годовое число часов использования максимума которой также относительно невелико. Напротив, чисто промышленные сети, будучи относительно короткими, снабжают территории с большой плотностью нагрузки, причем, как правило, графики нагрузки промышленных предприятий характеризуются высокой степенью заполненности. В какой-то степени промежуточное положение занимают в этом плане городские сети. Сочетание коммунально-бытовых и промышленных потребителей на городских территориях обусловливает значительную неравномерность графиков нагрузок узлов городской сети. Эта неравномерность в ряде случаев (когда основными источниками питания города являются ТЭЦ, работающие по тепловому графику) вызывает необходимость привлечения дополнительных маневренных мощностей, позволяющих системе своевременно и быстро реагировать на резкие спады и подъемы нагрузки.

Помимо признаков, косвенно связанных со значением номинального напряжения сети, существуют и другие. Так, например, классифицируют сети по роду тока, по конфигурации, по отношению к помещению и по конструктивному выполнению.

В соответствии с родом тока различают сети переменного и постоянного тока. О первой группе речь шла выше. В дополнение следует упомянуть, что в России сети трехфазного переменного тока напряжением НО кВ и выше выполняются с глухим заземлением нейтрали, а сети более низких напряжений — с изолированной или заземленной через дугогасящий реактор нейтралью.

Сети постоянного тока используются для обеспечения некоторых электротехнологических процессов в промышленности, например в электролизных цехах алюминиевых заводов. На постоянном токе осуществляется электропривод ряда механизмов и частично электрификация транспорта. Протяженные электропередачи постоянного тока используются чаще всего в качестве межсистемных связей.

С точки зрения конфигурации различают разомкнутые и замкнутые сети. К разомкнутым относятся сети, образованные радиальными или радиально-магистральными линиями, осуществляющие электроснабжение потребителей от одного источника питания, причем каждый потребитель получает питание с одного направления. К числу замкнутых относятся сети, которые обеспечивают питание потребителей не менее чем с двух сторон. Наиболее простой формой замкнутой сети является одноконтурная (кольцевая) сеть. Питающие сети, как правило, являются сложно-замкнутыми, т.е. имеют большое число контуров.

По отношению к помещению иногда различают внутренние и наружные сети. И, наконец, по конструктивному выполнени сети делятся на внутренние проводки (до 1 кВ), кабельные (до 500 кВ) и воздушные (до 750—1150 кВ) сети. Сети внутри промышленных предприятий иногда частично выполняются закрытыми комплектными токопроводами, прокладываемыми вдоль колонн и стен цехов на высоте, допустимой по условиям производства. Кабельные сети 6—20 кВ в настоящее время являются основой городских и промышленных распределительных сетей. Воздушные сети характерны для электроснабжения сельских потребителей, а также для районных и системообразующих сетей.

Контрольные вопросы

1. Какие технико-экономические преимущества дает объединение электростанций в энергосистемы?

2. Назовите первые электростанции, сооруженные по плану ГОЭЛРО?

3. Какие значения напряжений приняты в единой шкале номинальных напряжений в конце 20-х годов ХХ века?

4. Какие технические проблемы возникли при создании дальних линий электропередачи напряжением 500 кВ и протяженностью более 1000 км?

5. Основные особенности электроэнергетического производства?

6. Назначение и характерные особенности электрических сетей?

7. По каким признакам осуществляется классификация электрических сетей?

8. Как электрические сети классифицируются по назначению?

 

 


Дата добавления: 2015-02-16; просмотров: 60 | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Упражнения| Глава 2. Советско-западногерманские дипломатические отношения в 1969-1975 гг.

lektsii.net - Лекции.Нет - 2014-2019 год. (0.026 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав