Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Имуноблотинг

1 етап: Розчинні білки збудника електрогують і розділяють методом електрофорезу в гелі

2 етап: Смужки розділені електрофорезними білками переносять на бума жну підложку (нітроцелюлозна плівка) і продовжують електрофорез.

3 етап: Розрізають плівку і проводять прямий ІФА з сироваткою пацієнта, візуально відмічають взаємодію сивороточних Ат з специфічними Аг.

 

21. Окраска по Граму:

· На фиксированный мазок нанести карболово-спиртовой раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 1- 2 мин ее снять, а краситель смыть.

· Нанести раствор люголя на 1-2 мин.

· Обесцветить этиловым спиртом в течение 30-60 с до прекращения отхождения фиолетовых струек красител.

· Промыть водой

· Докрасить водным раствором фуксина в течение 1-2 мин, промыть водой, высушить и микроскопировать.

Грамположительные бактерии окрашиваются в темнее – фиолетовый цвет, грамотрицательные- в красный.

 

 

22. Загальна характеристика методів санітарно-мікробіологічних досліджень

 

Для визначення кількості мікроорганізмів використовують різні методи:

· прямий підрахунок під мікроскопом у рахувальних камерах (застосовується рідко);

· кількісний посів на щільні середовища з наступним підрахунком колоній, які виросли;

· титраційний посів на рідкі поживні середовища;

· спеціальні методи, які враховують особливості досліджуваного матеріалу.

 

Кількість санітарно-показових мікроорганізмів у досліджуваному матеріалі виражають у вигляді титру чи індексу.

 

Титр - це найменший об'єм досліджуваного матеріалу (в мілілітрах) чи вагова кількість (у грамах), в яких виявлена одна клітина санітарно-мязового мікроорганізму.

 

Індекс - кількість клітин санітарно-показового мікроорганізму в 1 л (і г) досліджуваного матеріалу.

 

Відповідно, для грунту і харчових продуктів:

 

Індекс - величина, обернена титру, тому перерахунок його в індекс і навпаки можна здійснювати за формулою (для рідин):

Індекс частіше визначають шляхом застосування мембранних фільтрів чи посіву різних розведень досліджуваних субстратів на щільні поживні середовища, на яких потім підраховують колонії.

Вибір того чи іншого санітарно-показового мікроорганізму залежить від об'єкта дослідження та конкретної задачі. Нерідко одночасно визначається присутність і ведеться кількісний підрахунок двох і більше санітарно-показових мікроорганізмів.

Загальне мікробне число (загальна мікробна забрудненість) об'єкта характеризується кількістю мікроорганізмів в 1 мл води, іншої рідини чи в 1 г твердої речовини.

Визначення мікробного числа є непрямим методом і дозволяє зробити висновок про можливе зараження досліджувано тварин. Кількість їх збільшується по мірі забруднення навколишнього середовища і зменшується при його самоочищенні. Таким чином, бактеріальна забрудненість субстрату, яка визначається цим методом, виявляється значно меншою, ніж за прямим підрахунком (не дають росту мертві клітини та живі, що втратили здатність розмножуватись; не ростуть термофіли та психрофіли, анаероби, гриби; не завжди розбиваються конгломерати, і одна колонія виростає із декількох клітин)..Кількість мікроорганізмів, які виростають на МПА виявляється в багато разів меншою, ніж їхній справжній вміст у досліджуваному об'єкті.

 

Сапрофітні мікроорганізми - головні збудники псування харчових продуктів, тому при оцінці якості цих продуктів визначають мікробне число.

При незначному мікробному забрудненні об'єкта робиться висів цільного матеріалу. При масивному забрудненні необхідно робити розведення, з яких потім здійснювати висів на середовища.

Для приготування розведень беруть ряд пробірок, у кожній з яких міститься 9 мл стерильної води чи фізіологічного розчину. До першої пробірки вносять 1 мл досліджуваного матеріалу, ретельно перемішують новою піпеткою шляхом багаторазового наповнювання піпетки і переносять 1 мл до другої пробірки (розведення 10~2) і т. д. (рис. 1).

 

Існує кілька методів визначення загального мікробного числа: метод прямого підрахунку і метод кількісного посіву різних розведень зразків і проб досліджуваного об'єкта.

 

Прямий підрахунок мікроорганізмів у досліджуваному об'єкті проводиться під мікроскопом у рахувальних камерах Горяєва чи в камерах, спеціально сконструйованих для підрахунку бактерій. За допомогою цього методу визначають загальну кількість живих та мертвих клітин. Завчасно, досліджувану пробу обробляють так, щоб одержати гомогенну суспензію. Для полегшення підрахунку бактерій додають барвник, частіше за все еритрозин. Можна здійснювати прямий підрахунок і на мембранних фільтрах, через які пропускають речовину чи суспензію. Застосовується він у надзвичайних випадках, коли потрібна негайна відповідь відносно кількісного вмісту бактерій, наприклад, при аваріях систем водопостачання, оцінці ефективності роботи очисних споруд тощо. Метод простий і доступний для використання в санітарно-бактеріологічних лабораторіях, проте має ряд недоліків. За його допомогою важко відрізнити мікроорганізми від сторонніх часток, точно визначити кількість мікроорганізмів, оскільки вони часто утворюють великі скупчення (конгломерати), неможливо диференціювати живі мікроорганізми та мертві, санітарне значення яких неоднакове, важко підрахувати дрібні мікроорганізми.

 

Метод кількісного посіву досліджуваного матеріалу на щільні поживні середовища дозволяє підраховувати живі мікроорганізми. При визначенні мікробного числа виявляють, в основному, колонії мезофільних аеробних і факультативно-анаеробних бактерій, здатних розмножуватися на МПА, тобто використовувати білок і продукти його розщеплення як джерело азотного живлення. Ці мікроорганізми є основними споживачами органічних речовин, які вносяться до грунту та води з різними відходами промислових підприємств, виділеннями людей.

 

Посів за методом Коха використовується для визначення загальної кількості бактерій. У порожню стерильну чашку Петрі наливають 1 мл досліджуваного матеріалу з відповідного розведення і заливають 10-15 мл розплавленого, охолодженого до 45° С МПА, змішують з рідиною, обертаючи чашку на поверхні стола. Після застигання агару чашку перевертають кришкою вниз, культивують при 37° С протягом 24-48 годин чи при 22° - 72 години.

 

Колонії підраховують як на поверхні, так і в товщі агару, для чого чашку кладуть догори дном на чорний фон. Кожну колонію відмічають чорнилами. Оцінюють тільки ті чашки, на яких виросло від ЗО до 300 колоній. Якщо на чашці з найбільшим розведенням виросло понад 300 колоній і аналіз не можна повторити, то допускається підрахування колоній при сильному боковому освітленні за допомогою спеціальної пластинки з сіткою та лупи. Підраховується кількість не менше ніж у 20 квадратах площею 1 см2 у різних місцях чашки. Розраховується середня кількість колоній у 1 см2, яку помножують на площу чашки.

 

У результаті підрахунку колоній у кожній чашці визначають кількість бактерій на 1 мл (1 г) досліджуваного матеріалу з урахуванням розведення. За кількість бактерій приймають середнє арифметичне результатів підрахунку колоній на чашках з посівом двох сусідніх розведень.

 

Наприклад: розведення 101--310 колоній, розведення 10~2-35 колоній.

 

Загальна кількість бактерій - 310*10+35x100

 

Результат дослідження можна округлити до 2-3 значущих цифр (наприклад, 7989 до 8000).

 

Титраційний метод використовується для визначення кількості санітарно-показових мікроорганізмів. Суть його полягає в наступному:

- досліджуваний матеріал гомогенізують, при дослідженні твердих речовин готують суспензію;

- готують серії розведень;

- роблять посів визначених об'ємів і їхніх розведень (по 1 мл) до рідкого поживного середовища. Кожен об'єм потрібно засівати в декілька пробірок (2-х, 3-х, 4-х, 5-ти і т. д. рядні посіви). Оптимальним є 3-х рядний посів (трикратне повторення);

- відмічають наявність росту на рідкому поживному середовищі та висівають із пробірок, в яких відмічено ріст, на щільне поживне середовище;

- проводять ідентифікацію мікроорганізмів, які виросли на щільному середовищі. Враховуються морфологічні, тинкторіальні, культуральні, фізіолого-біохімічні властивості.

 

Якщо застосовувався однорядний метод, результат виражається у вигляді титру - найменшого об'єму, в якому знайдено досліджуваний організм (найбільше розведення).

 

Якщо застосовувався багаторядний метод, результати підраховують за допомогою спеціальних таблиць, котрі дозволяють за комбінацією позитивних об'ємів визначити титр та індекс.

 

Метод мембранних фільтрів використовується для визначення кількості санітарно-показових мікроорганізмів у матеріалах, що містять мало дисперсної фази.

 

Для його застосування необхідне спеціальне обладнання, фільтри та фільтраційні установки. Для санітарно-бактеріологічних досліджень використовуються фільтри, непроникні для бактерій. Фільтраційна установка складається із фільтраційного апарата (наприклад, фільтра Зейтца) та джерела вакууму. Для стерилізації фільтри занурюють у воду, нагріту до 80° С, потім нітроцелюлозні фільтри тричі кип'ятять по 10 хв, замінюючи воду, а мембранні - «Владипор» - 1 раз протягом 10-15 хв.

 

Фільтраційний апарат стерилізують за допомогою змоченого у спирті ватного тампона. Стерильний мембранний фільтр стерильним пінцетом кладуть на сітку фільтраційного апарата та закріплюють відповідно до інструкції приладу. До стакана фільтраційного приладу наливають необхідний об'єм досліджуваного матеріалу чи його розведення. При фільтруванні невеликих об'ємів рідини (1 мл) у стакан спочатку наливають 10 мл стерильної води. Загальний об'єм рідини, яку фільтрують, не повинен перевищувати і 100 мл. Для великих об'ємів беруть декілька фільтрів. Створюють вакуум у приймальній ємності. Після закінчення фільтрації витримують деякий час для видалення надлишку вологи. При збереженні вакууму апарат розбирають і стерильним пінцетом, не перевертаючи, переносять фільтр на поверхню щільного поживного середовища, не допускаючи утворення бульбашок повітря між фільтром і середовищем.

 

При наявності в рідині великої кількості завислих часток на поверхні робочого фільтра розміщують планктонний фільтр. У цьому випадку на поживне середовище переносять обидва фільтри, інкубують посіви 24 год при 37° С. Після цього підраховують колонії, типові для визначаємого мікроорганізму. Об'єм рідини для фільтровання підбирається таким чином, щоб на фільтрі виростало не більше ЗО колоній. З фільтра вибирається декілька типових колоній для проведення ідентифікації за допомогою визначення морфологічних, тинкторіальних, культуральних та фізіолого-біохімічних ознак.

 

Результати виражають у вигляді індекса за формулою

де N - кількість колоній, V - профільтрований об'єм води в мілілітрах.

 

 

23.

Вакцинация стимулирует адаптивный иммунный ответ путем образования в организме специфических клеток памяти, поэтому последующая инфекция тем же агентом вызывает стойкий, более быстрый иммунный ответ. Для получения вакцин используют штаммы патогенов, убитые или ослабленные, их субклеточные фрагменты или анатоксины.

Выделяют моновакцины — вакцины, приготовленные из одного патогена, и поливакцины — вакцины, приготовленные из нескольких патогенов и позволяющие развить стойкость к нескольким болезням

 

Классификация:

 

---Живые вакцины

Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма со стойко закрепленной авирулентностью (безвредностью). Вакцинный штамм после введения размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики краснухи, кори, полиомиелита, туберкулеза, паротита.

 

---Корпускулярные вакцины

Корпускулярные вакцины содержат ослабленные или убитые компоненты вириона (вирионы). Для умерщвления обычно используют тепловую обработку или химические вещества (фенол, формалин, ацетон)

 

---Химические вакцины

Создаются из антигенных компонентов, извлеченных из микробной клетки. Выделяют те антигены, которые определяют иммуногенные характеристики микроорганизма.

 

---Рекомбинантные вакцины

Для производства этих вакцин применяют методы генной инженерии, встраивая генетический материал микроорганизма в дрожжевые клетки, продуцирующие антиген. После культивирования дрожжей из них выделяют нужный антиген, очищают и готовят вакцину. Примером таких вакцин может служить вакцина против гепатита В, а также вакцина против вируса папилломы человека (ВПЧ)

 

 

Для культивирования анаэробных микроорганизмов необходимо создание бескислородных условий, достигаемое различными методами.

 

Физические методы основаны на создании вакуума в специальных аппаратах — анаэростатах. Иногда воздух в них заменяют каким-либо другим газом, например СО2. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубине столбика сахарного агара или среды Вильсона — Блера, налитых в пробирки в расплавленном состоянии и остуженных до 43°С. По методу Вейона — Виньяля расплавленный и остуженный агар с посевным материалом набирают в стеклянные трубочки, которые запаивают с двух концов.

 

Химические методы заключаются в том, что при культивировании исследуемого материала на плотных средах в эксикатор помещают химические вещества, например пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода. В жидкие питательные среды можно добавлять различные редуцирующие вещества: аскорбиновую или тиогликолевую кислоту.

 

Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в чашках Петри, герметически закупоренных. Вначале кислород поглощается растущими аэробами, посеянными на одной половине среды, а затем начинается рост анаэробов, посев которых сделан на другой половине. Наиболее удобна для культивирования анаэробов специальная среда Китта — Тароцци. В нее входят сахарный МПБ, который наливают в пробирки в количестве 10—12 мл, и кусочки вареных паренхиматозных органов. Перед употреблением среду Китта,— Тароцци кипятят на водяной бане для удаления растворенного в ней кислорода. Среду заливают сверху стерильным вазелиновым маслом. Заметный рост анаэробов (помутнение) может наблюдаться через 48 ч и более в зависимости от количества посевного материала.

 

Рост изолированных колоний анаэробов можно получить при рассеве исследуемого материала по поверхности кровяно-сахарного агара, разлитого в чашки Петри. После посева чашки помещают в анаэростат. Исследуемый материал в убывающей концентрации можно засевать в высокий столбик агара. Образовавшиеся отдельные колонии анаэробов выделяют, распилив пробирку в месте роста. Колонии анаэробов для получения значительного количества биомассы отсевают затем на среду Китта — Тароцци. В качестве источника энергии для анаэробов используют глюкозу, добавление которой в питательную среду обязательно.

 

25.

Иммуноферментный анализ (сокращённо ИФА, англ. enzyme-linkedimmunosorbentassay, ELISA) — лабораторный иммунологический метод качественного или количественного определения различных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакцияантиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала




Дата добавления: 2015-04-22; просмотров: 17 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | 4 | <== 5 ==> |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав