Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вольтамперометрия

Вольтамперометрическими называют методы анализа, основанные на регистрации и изучении зависимости тока, протекающего через электролитическую ячейку, от внешнего наложенного напряжения. Графическое изображение этой зависимости называют вольтамперограммой. Анализ вольтамперограммы даёт информацию о качественном и количественном составах анализируемого раствора.

Для регистрации вольтамперограмм нужна электролитическая ячейка, состоящая из индикаторного электрода (иногда его называют рабочим электродом) и электрода сравнения.

Электродом сравнения обычно служит насыщенный каломельный электрод или слой ртути на дне электролизера (донная ртуть). В качестве индикаторного используют ртутный капающий электрод, микродисковые платиновый или графитовый электроды (вращающиеся или стационарные).

В зависимости от типа индикаторного электрода вольтамперометрические методы принято делить на полярографию и собственно вольтамперометрию. Если в качестве индикаторного электрода используют ртутный капающий электрод, то полученные зависимости силы тока от напряжения называют полярограммами и соответственно метод анализа – полярографией. При работе с любым другим индикаторным электродом, в том числе и со стационарным ртутным, дело имеют с вольтамперометрией.

Вольтамперометрия основана на изучении и использовании зависимостей ток-потенциал, полученных в электролитической ячейке с любым электродом, кроме капающего ртутного.

Различают прямую, инверсионную и косвенную вольтамперометрию (амперометрическое титрование). Индикаторным электродом обычно служит вращающийся платиновый или графитный электрод. Они отличаются от капельного ртутного электрода тем, что они имеют другую область поляризации, и поверхность их во время регистрации вольтамперграммы не возобновляется.

Инверсионная вольтамперометрия. Основной принцип инверсионной вольтамперометрии состоит в электрохимическом концентрировании определённого вещества на электроде путём электролиза анализируемого раствора и последующем вольтамперометрическом анализе концентрата. В этом методе используют стационарные электроды (висящая ртутная капля) и плёночные ртутные электроды. Он применим для определения крайне низких концентраций веществ, вплоть до 10–9 М.

Вольтамперометрическим методом можно определять практически все катионы металлов, многие анионы, неорганические и органические вещества, способные к электрохимическому окислению или восстановлению.

Амперометрическое титрование представляет собой полярографический метод индикации точки эквивалентности при титровании: регистрируется изменение тока при потенциале, соответствующем предельному диффузионному току (на вольтамперной кривой) одного из участников химической реакции. По зависимости ток–объём титранта находят точку эквивалентности.

Аналитические возможности метода амперометрического титрования широки – почти все элементы и большое число органических соединений.

Достоинство метода – избирательность, так как можно подобрать потенциал, при котором в электрохимической реакции участвует только одно вещество из многокомпонентной смеси. Нижний предел чувствительности метода 10–6 М

Полярография — один из важнейших электрохимических методов анализа веществ, исследования кинетики химических процессов.

Протекание электрического тока в водном растворе связано с движением ионов, образованных в результате электролитической диссоциации. Протекание тока через ртуть, другие металлические и углеродные материалы – с движением электронов. Поэтому на границе электрод/раствор должен существовать какой-то процесс, обеспечивающий переход потока ионов в поток электронов, иначе ток не пойдет. Такой процесс представляет собой электрохимическую реакцию. Количество прореагировавшего вещества определяется законом Фарадея, то есть пропорционально прошедшему через электрод заряду:

М = Мэкв * Q/zF, (1)

Где М – масса прореагировавшего вещества, Мэкв – эквивалентная масса прореагировавшего вещества, Q - прошедший через электрод заряд, z- количество электронов, участвующих в превращении одной молекулы или одного иона, F- число Фарадея, задающее коэффициент пропорциональности. Число Фарадея равно 96485 кулон/моль и представляет собою число Авогадро, умноженное на заряд электрона. Если отнести уравнение (1) к единице времени, масса превратится в массовую скорость реакции (поток вещества) J, а заряд – в ток i, которые обычно относят к единице поверхности электрода (плотность тока): J = Мэкв * i/zF,

Метод основан на анализе кривых зависимостей силы тока от приложенного к электрохимической ячейке напряжения — так называемых полярограмм. В зависимости от формы и скорости изменения поляризующего напряжения различают постояннотоковую (классическую), переменнотоковую, высокочастотную, импульсную, осциллографическую полярографию, варианты метода имеют различные чувствительность (минимально определяемая концентрация вещества) и разрешающую способность (допустимое отношение концентраций определяемого компонента и сопутствующих).

В ячейке для полярографии присутствуют поляризуемый и неполяризуемый электроды, площадь первого должна быть значительно меньше площади второго — в таком случае идущая на нём электродная реакция не вызывает заметных химических изменений в растворе или изменения разности потенциалов. В качестве поляризуемого электрода могут быть использованы ртутно-капающий электрод, стационарный ртутный электрод, твёрдые электроды из графита, благородных металлов и пр.

Уравнение полярографической волны Ильковича-Гейровского.

Рассмотрим электролиз в системе, где катодом служит ртутный капающий электрод, а анодом является практически неполяризуемый каломельный электрод. Если в растворе нет веществ, способных восстанавливаться под действием электрического тока, сила тока будет пропорциональна приложенному напряжению Е (закон Ома): 1=E/R.

В присутствии веществ, способных восстанавливаться на ртутном электроде в области исследуемых напряжений по достижении потенциала восстановления ионы начнут разряжаться на ртутном катоде (нередко с образованием амальгамы):

Мn++ne-+ Hg=M (Hg)

Потенциал ртутного катода, на котором протекает обратимый процесс, выражается уравнением Нернста:

где Са – концентрация амальгамы; γa – ее коэффициент активности; См – концентрация восстанавливающихся ионов в приэлектродном слое (заряд иона для простоты опущен); γМ – его коэффициент активности; аHg – активность ртути в амальгаме; Е° – стандартный потенциал электрода.

В результате процесса сила тока в цепи начнет возрастать и концентрация восстанавливающихся ионов у поверхности ртутной капли уменьшится. Однако за счет диффузии из массы раствора к поверхности капли доставляются новые порции ионов. Сила тока в цепи будет зависеть от скорости диффузии, которая пропорциональна разности концентраций в массе раствора (С0М) и в приэлектродном слое (СМ). Сила тока будет пропорциональна этой разности:

I= kM(cM0-cM).

Вклад других, недиффузионных механизмов поступления ионов в прикатодный слой (например, миграция ионов к катоду под действием электрического поля в условиях большого избытка индифферентного фонового электролита пренебрежимо мал. При некотором потенциале катода концентрация ионов у поверхности ртутной капли См уменьшится до ничтожно малой по сравнению с концентрацией в массе раствора, и скорость разряда ионов на катоде станет равной скорости диффузии.

Концентрация восстанавливающегося иона в глубине раствора постоянна, а концентрация в прикатодном слое близка к нулю. Поэтому разность концентраций, определяющая скорость диффузии при данной температуре, будет постоянна, что и приводит к постоянной скорости поступления ионов к катоду и постоянной силое тока, не изменяющейся при дальнейшем увеличении напряжения. Этот постоянный ток, контролируемый диффузией, называют диффузионным: Iд =kМ сМ.

Потенциал полуволны является качественной характеристикой иона и зависит от среды:

1.Природы и концентрации фонового электролита.

2.Наличие в растворе веществ, способных к комплексообразованию с определяемым ионом. Присутствие в исследуемом растворе лиганда смещает потенциал полуволны в отрицательную область, что позволяет создавать условия для определения нескольких компонентов в одном растворе без их предварительного разделения. Например, в 1 М КС1 ионы свинца (II) и таллия (I) имеют потенциалы полуволны, соответственно, –0,435 и –0,483 В и их раздельное определение неосуществимо. В 1 М NaОН потенциал полуволны свинца становится равным –0,755 В, а у таллия остается практически без изменения.

Если в растворе находится несколько веществ, потенциалы полуволны которых различаются на 100 мВ и больше, то на полярограмме будет не одна волна, а несколько – по числу восстанавливающихся ионов, а возможно и больше, так как при ступенчатом восстановлении один ион может давать две.

Для идентификации неизвестного вещества можно этим методом определить потенциал полуволны и, пользуясь таблицей потенциалов полуволны или полярографическим спектром, установить наиболее вероятный элемент.




Дата добавления: 2015-01-30; просмотров: 65 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | <== 4 ==> |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав